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ABSTRACT
In this paper, we propose a novel general framework for ten-

sor based null space affine invariants, namely, tensor null space
invariants (TNSI) with a linear classifier for high order data

classification and retrieval. We first derive TNSI, which is

perfectly invariant to multidimensional affine transformations

due to camera motions for multiple motion trajectories in con-

secutive motion events. We subsequently propose an efficient

classification and retrieval system relying on TNSI for archiv-

ing and searching motion events consisting of multiple mo-

tion trajectories. The simulation results demonstrate superior

performance of the proposed systems.

Index Terms— Classification, multilinear, null space, re-

trieval, tensor, trajectory.

1. INTRODUCTION

Among affine view-invariance systems, majority of them rep-

resent affine view-invariance in a single dimension [1], thus

limiting the system to only single object motion based queries

and single dimension affine view-invariance. In many appli-

cations, it is not only the individual movement of an object

that is of interest, but also the motion patterns that emerge

while considering synchronized or overlapped movements of

multiple objects. For example, in sports video analysis, we

are often interested in a group activity involving motion ac-

tivity of multiple players, rather than the activity of each indi-

vidual player. Moreover, due to camera movement, same mo-

tion trajectory has completely different representations from

different viewing angles. Therefore, a highly efficient clas-

sification and retrieval system which is invariant to multidi-

mensional affine transformations is highly desirable.

In this paper, we propose a novel fundamental mathematical

framework for tensor null space invariants and use this frame-

work for the important application of view-invariant classifi-

cation and retrieval of motion events involving multiple mo-

tion trajectories.1 Our main contributions are as follows: (i)
we introduce tensor null space invariants (TNSI) which are
perfect affine invariants in a multi-dimensional space, (ii) we

1Tensor representation in a finite-dimensional space is often referred to as

multilinear algebra.

demonstrate robustness and superiority of TNSI as a powerful
tool in classification and retrieval of high-dimensional data
over traditional approaches.

The rest of the paper is organized as follows: In Section

2, the mathematical formulation and two important properties

of tensor null space invariants (TNSI) are introduced. In Sec-

tion 3, an efficient classification and retrieval system based

on TNSI is presented. Section 4 presents simulation results

using real-life trajectories from the Australian Sign Language

database. Finally, in Section 5, we provide a brief summary

of the results.

2. TENSOR NULL SPACE INVARIANTS

Let us denote the tensor A ∈ RI1×I2...IN−1×IN as the multi-

dimensional data. Elements of A are denoted as ai1i2...iN
. As

in [2], a generalization of the product of two matrices is the

product of a tensor and a matrix. The mode-n product of a ten-

sor A ∈ RI1×I2...×In...IN−1×IN by a matrix U ∈ RIn×Jn , de-

noted by A×n U , is a tensor B ∈ RI1×...In−1×Jn×In+1...×IN

whose entries are:

(A ×n U)i1...in−1jnin+1...iN
=

∑

in

ai1...in−1inin+1...iN
uinjn

(1)

The mode-n product B = A ×n U can be computed via

the matrix multiplication B(n) = UA(n), followed by a re-

tensorization to undo the mode-n flattening.

As in [1], let Qi = (xi, yi) be a single 2-D point, i =
0, 1, . . . , n − 1, among n ordered non-linear points in R2.

Consider the following arrangement of the n 2-D points in

a 3 × n matrix M:

M =

⎛

⎝
x0 x1 ... xn−1

y0 y1 ... yn−1

1 1 ... 1

⎞

⎠ (2)

the null space Hn−3 can be represented as:

Hn−3 = {q = (q0, q1, . . . , qn−1)T , i.e.Mq = (0, 0, 0)T } (3)

Applying the affine transformation T on the matrix M1 =
TM , the null spaces of M1 and M are identical as described
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in [1]. Similarly, applying the affine transformation Tm, Tn

on the mth, nth unfolding of the multi-dimensional data M ,

respectively, if the resulting tensor null space Q is invariant in

both dimensions, the it is referred to as mode-m,n invariant.
Let us derive the mathematical formulation of the mode-1,2,3

invariant tensor Q for three dimensional data M ∈ RI1×I2×I3

. To be rotation invariant, we have:

M(1) × Q(3) = 0 ,M(2) × Q(2) = 0 ,M(3) × Q(1) = 0 , (4)

where M(1),M(2),M(3) are the unfolding of the three order

tensor M into matrices with the dimension I2I3×I1, I1×I3I2

and I1 × I2I3, respectively, and Q(3), Q(2), Q(1) are the cor-

responding unfoldings of the tensor Q. On the right side of

(4), 0 represents the corresponding null tensor.

Let us assume the translation vector as Ti = [ti, . . . , ti], the

translation matrix as T = [T1, . . . , TN ]′. For example, for

motion trajectories, T = [T1, T2]′, where T1 represents the

shift of all the coordinates in x dimension and T2 represents

the shift of all the coordinates in y dimension. Now we shall

derive the condition on the TNSI Q to guarantee the invari-

ance of translation for tensor M . To derive the translation in

the dimension In, we should unfold the tensor M into matrix

M(n) = [m1, ..., mN ]′ with the dimension I1I2 × . . .
In−1In+1 . . . IN × In. Assuming R as rotation matrix, ac-

cording to the definition of tensor null space invariants:

(RM(n) + T )Q = [Rm1 + T1, ..., RmN + TN ]′Q =
= [Rm1, ..., RmN ]′Q + [T1, ..., TN ]′Q = 0 , (5)

Due to invariance of rotation, [Rm1, ..., RmN ]′Q = 0. Thus,

[T1, ..., TN ]′Q = [T1Q, ..., TNQ]′ = [
∑

t1q1, ...,
∑

tNqN ] = [t1, ..., tN ]
∑

qi = 0 (6)

Since [t1, ..., tN ] can be arbitrary, the condition for the equa-

tion (6) to hold true is that each column of the unfolding of

TNSI should sum up to zero, namely,
∑

qi = 0. Therefore,

we obtain the condition for invariance of translation for the

mode-1,2,3 invariant tensor Q:

∑
Q(1) = 0,

∑
Q(2) = 0,

∑
Q(3) = 0 (7)

Combining equations (4) and (7), we can solve the TNSI Q
subject to the mode-1,2,3 affine view-invariant. If the order

of the tensor M is 2, it is easy to show that the condition boils

down to the Stiller’s one dimensional null space invariants

[1]. It is also easy to extend the result to the case of the Nth

order tensor with mode-Ia, . . . , Ik affine view-invariant.

Lemma 1: For the TNSI tensor Q satisfying n dimensional

affine view-invariant, Q should be a n+1 order tensor, where

the first n dimension are determined by the size of the data M ,

the n + 1th dimension are determined by the number of the

basic solutions. Specifically, if the dimension of the N order

tensor M I1 × I2 × . . .× In × In+1 × . . .× IN is subject to

n dimensional affine transformation in the first n dimension

I1 × I2 × . . .× In, the corresponding n+1 order tensor TNSI

QW1×W2×...×Wn+1 have the dimension as follows:

W1 = I2I3 . . . IN ,W2 = I1I3 . . . IN , . . . , (8)

Wn = I1 . . . In−1In+1 . . . IN ,Wn+1 = t − rank(A) , (9)

where A is the coefficient matrix in (10).

Remark: t is the number of unknowns. Wn+1 is determined

by the number of basic solutions, namely, the rank of the co-

efficient matrix A in the equation (10) according to rank the-
orem. In the n+1 order tensor Q, the first n order is deter-

mined by the corresponding affine view-invariant. The n +
1th dimension is the space for the number of basis, namely,

the number of basic solutions for the underdetermined linear

equations. Theoretically, it fits perfectly with the theory for

one dimensional affine view invariant [1], TNSI reduce to

a matrix, where the column space is spanned by null space

operators. Since the equations (4) and (7) are all linear equa-

tions, we vectorize the unknown elements of Q and rewrite

all the equations in the matrix form as:

⎛
⎜⎜⎝

m11 m12 ... m1,t−1 m1t

m21 m22 ... m2,t−1 m2t

... ... ... ... ...
ms1 ms2 ... ms,t−1 mst

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

q
(i)
1

q
(i)
2

...

q
(i)
t

⎞
⎟⎟⎟⎠ = 0 , (10)

where in (10), mij represents the coefficient formed by the

high order data according to (4) and (7) and qi = [q(i)
1 , ...q

(i)
t ]

represents the ith basis for tensor null space invariants. The

TNSI is spanned by all the basis q1, ..., qk and obtained by

computing all the basic solutions from (10) and doing reten-

sorization.

Lemma 2: For s < i ≤ t, relying on the equation (10), the

constructive solutions for the ith basis for TNSI is given by:

q
(i)
1 = det

⎛
⎜⎜⎝

m12 m13 ... m1s m1,i

m22 m23 ... m2s m2,i

... ... ... ... ...
ms2 ms3 ... mss ms,i

⎞
⎟⎟⎠ , (11)

q
(i)
2 = −det

⎛
⎜⎜⎝

m11 m13 ... m1s m1,i

m21 m23 ... m2s m2,i

... ... ... ... ...
ms1 ms3 ... mss ms,i

⎞
⎟⎟⎠ , (12)

..., (13)

q(i)
s = (−1)sdet

⎛
⎜⎜⎝

m11 m12 ... m1,s−1 m1,i

m21 m22 ... m2,s−1 m2,i

... ... ... ... ...
ms1 ms2 ... ms,s−1 m3,i

⎞
⎟⎟⎠ , (14)

q
(i)
k = 0,∀k = s + 1, ..., t . (15)

Remark: Lemma 2 can be easily proved by the basic knowl-

edge from linear algebra. According to lemma 2, the TNSI is

uniquely determined by the original data M and the dimen-

sions that are subject to affine invariance.
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3. CLASSIFICATION AND RETRIEVAL
ALGORITHMS

We align each trajectory as two rows in a matrix according to

x and y coordinates, and the number of rows of a matrix is

set to be twice the number of the objects in the motion event

under analysis.

M = (Mi,j)i=1,2,...,2J;j=1,2,...,P , (16)

In the above equation, P denotes the temporal length of nor-

malized trajectories, J represents the number of trajectories

within one motion event. Finally, multiple trajectory matrices

are aligned in the direction orthogonal to the plane spanned

by them, and form a three dimensional matrix, or tensor. We

refer to it as Motion Event Tensor T . as shown in Fig. 1.

T = (Ti,j,k)i=1,2,...,2J;j=1,2,...,P ;k=1,2,...,K , (17)

where K is the number of motion event samples (trajectory

video clips). Once we have generated the affine invariant rep-

resentation provided by the tensor null space operator, TNSI,

we can rely on numerous methods for indexing and classi-

fication. We choose a method for dimensionality-reduction

and classification based on PCNSA [3]. Notice that the term

null space used in PCNSA implies that the Approximate Null

Space (ANS) used for the representation of each class is formed

from the minimal eigenvectors within the class, and thus min-

imizes the intra-class variance. However, this process is not

intended to capture the null operator and is unrelated to TNSI

proposed in Section 2.

First, TNSI is converted to H =
∏n+1

i=1 Wi column vector Yp

which is assumed in class Ci and has Gaussian distribution

as Y |{Y ∈ Ci} ∼ N(μfull,i, Σfull,i), where μfull,i is the

class conditional mean and Σfull,i is the class conditional co-

variance matrix. To decrease the high dimensionality, we per-

form Principal Component Analysis (PCA), which removes

the noise-only directions and retain the directions that yield

large inter-class variance. PCA takes the L leading eigenvec-

tors of covariance matrix, Σfull, of the entire data taken from

all classes. The total scatter matrix, Σfull, can be written

Σfull = Σfull,w + Σfull,b where Σfull,w is within class co-

variance matrix and Σfull,b between class covariance matrix:

Σfull,w =
1

CK

C∑

i=1

K∑

k=1

(Yi,k − μfull,i)(Yi,k − μfull,i)T , (18)

Σfull,b =
1
C

C∑

i=1

(μfull,i − μfull)(μfull,i − μfull)T , (19)

where i is for class index and k is for motion event tensor in-

dex in the class. It is assumed that there are C classes in the

system and each class has K tensors.

PCA gives the L-dimensional projection matrix (WPCA)P×L.

After projections, in the PCA space PCNSA finds for each

class i an Mi dimensional subspace along which the class’s

intra-class variance is smallest. This subspace is referred to

as the Approximate Null Space (ANS) denoted as Ni since

the lowest eigenvalues’ corresponding eigenvectors are taken.

That means we choose the lowest noise variance directions as

for ANS. PCNSA Algorithm:

1. Obtain PCA Space: Evaluate the total covariance ma-

trix Σfull, then apply PCA to Σfull to find

WPCA, whose columns are the L leading eigenvectors.

Project the data vectors, class means and class covari-

ance matrices into the corresponding data vectors, class

means, and class covariance matrices in the PCA space.

2. Obtain ANS and Valid Classification Directions in
ANS: Find the approximate null space (Ni)L×Mi

, for

each class i by choosing Mi smallest eigenvalues’ cor-

responding eigenvectors. Ni = (ei,1|ei,2| . . . |ei,Mi
)L×Mi

.

If ei satisfies |(μi −μj)T ei| > δ2‖μi −μj‖, this direc-

tion is valid and used to build valid ANS, WNSA,i.

3. Classification: PCNSA finds distances from a query

tensor to all classes and minimum distance to a class is

chosen for classification of X.

di(X) = ‖WNSA,i(X − μi)‖ . (20)

4. SIMULATION RESULTS

In order to implement and evaluate the proposed classification

and retrieval system, we have used trajectories from the Aus-

tralian Sign language (ASL) data set obtained from University

of California at Irvine’s Knowledge Discovery in Databases

(UCI-KDD) archive [4]. The trajectories in the data set are

obtained by registration of the hand coordinates at each suc-

cessive instant of time by using a Power Glove interfaced to

the system. In our simulations, we have used 40 different

classes representing signing of 40 different words in the data

set. Each class has 69 trajectories recorded at different in-

stances.

Since in real life trajectories may have different lengths, we

normalize the length by taking the Fourier Transform and

choosing the biggest n=18 coefficients and then taking the

Inverse Fourier Transform so that all the trajectories are of

size 32 before invariant matrix calculations. We form the

motion event tensor T by randomly selecting the trajecto-

ries from the specific class and setting J=3, P=18, K=20,

namely, each tensor T ∈ R6×18×20 contains 3 × 20 = 60
motion trajectories, each trajectory has 18 samples and totally

there are 20 video clips. According to the definition of TNSI,

applying affine transformation to the unfolding matrix T(1)

with the dimension 2J × PK indicates rotation and transla-

tion of each trajectory at all video clips to the same amount.

Applying affine transformation to the unfolding matrix T(3)

with the dimension K × 2PJ indicates rotation and transla-

tion of the same trajectory at each video clip independently.
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Fig. 1. Flattening a 3rd order motion event tensor for multiple

trajectories representation.

Fig. 2. Accuracy for tensor (multiple motion trajectories)

classification (a) with an increasing number of classes and (b)

with an increasing number of tensors within a class.

Therefore, we compute the two dimensional invariants with

δ2 = 10−4 as thresholds and L = 50 in PCNSA. Fig. 2

(a) depicts the accuracy of the proposed classification system

versus the number of classes. There are 20 tensors in each

class. Simulation results show that our system preserves its

efficiency even for higher number of different classes. Fig.

2 (b) depicts accuracy values versus increase in the number

of tensors within a class. There are 20 classes in the system.

Fig. 3 shows Precision vs. Recall curves for indexing and

retrieval problem by using 40 classes, each class having 20

tensors. For retrieval problems, we compute the distance of

the query tensor to any other tensor using PCNSA on TNSI as

D(Xi, Y ) = ‖WNSA,i(Xi − Y )‖, where Y is the query ten-

sor. This distance is then used to find α nearest tensors, where

α is a user specified parameter. There are three curves in Fig-

ure 3, one is with using PCA on TNSI directly, where PCA is

basically used for dimension reduction. The other two curves

are applying PCNSA on single and two dimensional invari-

ants. We illustrate in Fig. 3 that the result of using PCNSA

Fig. 3. Precision-Recall metric for multiple motion trajecto-

ries retrieval using PCNSA on TNSI.

on TNSI is much superior to the one using PCA on TNSI di-

rectly. Moreover, the performance of TNSI in two dimensions

is much better than the single dimensional invariants.

5. CONCLUSION

We proposed the theoretical framework for tensor null space

invariants as a powerful view-invariant representation for recog-

nition and retrieval of multidimensional data sets. The pro-

posed TNSI is perfectly multidimensional view invariant due

to camera motions. We investigated the dimensions and the

size of TNSI. We subsequently determined exact solutions

for TNSI for arbitrary multi-dimensions of affine view invari-

ance. Moreover, we showed that any classification algorithms

can be used based on PCA representation of the TNSI op-

erator. We further demonstrated classification and retrieval

performance of multiple motion trajectories based on TNSI

and PCNSA.
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