
TOWARDS UNSUPERVISED LEARNING FOR AUTOMATIC
MULTI-CLASS OBJECT DETECTION IN SURVEILLANCE VIDEOS

Hasan Celik, Alan Hanjalic, Emile A. Hendriks

Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands

h.celik@tudelft.nl

ABSTRACT

Object detection is a critical step in automated surveillance.
A common approach to constructing object detectors
consists of annotating large datasets and using them to train
the detectors. However, due to inevitable limitations of a
typical training data set, such supervised approach is
unsuitable for building generic surveillance systems
applicable to a wide variety of scenes and camera setups. In
our previous work we proposed an unsupervised method for
learning and detecting the dominant object class in a general
dynamic scene observed by a static camera. In this paper,
we investigate the possibilities to expand the applicability of
this method to the problem of multiple dominant object
classes. We propose an idea how to approach this
expansion, and perform a proof-of-concept evaluation of
this idea using a representative surveillance video sequence.

Index Terms— Object detection, Surveillance, Pattern
classification, Clustering, Unsupervised learning

1. INTRODUCTION

Progresses in digital capture, storage and computing power
in recent years have made smart automated monitoring and
surveillance systems feasible. Consequently, new challenges
arose in the computer vision and machine learning fields
concerning the design of efficient and solid algorithms for
tasks such as object detection, recognition and tracking. Our
emphasis in this paper is object detection, which is the
essential component of automated surveillance and
monitoring solutions.

The problem of object detection has typically been
addressed through supervised, offline learning approaches,
which resulted in an abundance of solutions for various
object classes, scenarios and applications (e.g. [3, 4]). These
existing detectors detect different object classes generally
one at a time, and were proved effective in numerous cases.
However, their performance is limited by the quality of the
training data, which can be expressed by the extent to which
this data covers the whole scope of deviations in object
appearance specific for a given application context. These
deviations typically result from occlusions and the changes

in view point and lighting conditions. Compared to this, the
unsupervised methods do not rely that heavily on the
domain knowledge and could be able to adjust automatically
to the peculiarities of the observed scene. One such method
aiming at learning simultaneously two classes of objects
dominating the scene is introduced and evaluated in this
paper.

2. RELATED WORK AND CONTRIBUTION

Levin et al. [2] developed a system learned in a semi-
supervised fashion using co-training. Two distinct detectors
are used to train each other and improve the performance of
the system. Likewise, Javed et al. [8] used co-training to
improve the performance of an initial classifier by selecting
new training examples using PCA. Still, both systems
necessitate a non-negligible amount of supervision for
labeling during initialization. In [1], Nair et al. presented a
framework that uses a rough detector to collect training
samples to train a pedestrian detector. Yet their rough
detector is simply a manually pre-defined object size ratio.
More recently, Wu et al. presented in [5] an approach to
online (re)-training of a detector based on the outputs of an
oracle (coarse detector) using boosting. As boosting focuses
on difficult examples during training, this may cause
instability if some examples are wrongly labeled.
Furthermore, like [2], the method [5] also needs supervision
for the initial stages, and it can only learn objects having the
appearance very similar to the original samples. Nearly all
mentioned approaches have been applied in one context
only, e.g. for pedestrian or car detection, with the exception
of Javed et al [8], where the same procedure applies for both
pedestrians and cars. Compared to these methods, we
presented in [9] a detector of dominant objects able to
calibrate itself in an autonomous and robust fashion. This
approach is online and unsupervised: it automatically
obtains training samples from the input scene.

All the approaches mentioned above deal with only one
class of objects at a time. In surveillance scenarios,
however, multiple object classes appear often at the same
time, which requires simultaneous learning of multiple
object detectors.

3521978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

3. THE PROPOSED APPROACH

In our previous work [9] we demonstrated the effectiveness
of the unsupervised framework for learning the model of a
dominant object class in a given surveillance video
sequence and detecting all further instances of this object
class in that sequence. As illustrated in Figure 1, the first
component of this framework is a Coarse Object Detector
(COD). The COD extracts information from the video of the
observed scene and uses it to identify potential training
examples of the dominant object class. In its advanced form,
the framework may include a Clustering module, where the
different training examples corresponding to different object
classes are filtered and grouped together to provide reliable
samples for training of the Fine Object Detector (FOD).
While the COD uses simple object features to find candidate
samples of object classes, the Clustering module is much
more sophisticated and serves to refine the COD output by
grouping the “good” candidates into one cluster and “bad”
into the other. The good cluster is further used as a positive
training set for the FOD. The negative set for training the
FOD is obtained by randomly cropping image parts from
the video in frames containing no motion, at different
locations and scales. The trained FOD is then used to detect
all further instances (also the stationary ones) of the
dominant object class in new frames of the observed scene.

Coarse Object
Detector

SVM Training

Video

Detection

Fine Object
Detector

Negative samples

Positive
samples
contaminated
with outliers

Filtering Set via
Clustering Outlier-free

positive samples

Figure 1: Block diagram of the framework [9] to train a
dominant object detector in an unsupervised fashion.

The framework in Figure 1 is applicable in many
surveillance scenarios, where a single dominant object class
can be identified. Typical examples of such a class are
“people” in a shopping mall or at a railway station, or “cars”
on a highway. However, the situations involving multiple
dominant object classes are also frequent, as illustrated by
the real world scene example in Figure 2 where both “cars”
and “people” dominate, i.e. both are statistically relevant.

Figure 2: Scene involving two dominant object classes
(pedestrians and cars).

In the remainder of this section we investigate to which
extent it would be possible to expand the framework
realization from Figure 1 into a multi-class object detection
problem. We do this by modifying the post-processing
(clustering) step following the COD in Figure 1. Instead of
focusing on one “good” cluster only, we now target multiple
“good” clusters of COD outputs. Subsequently, each of
these clusters can be used to train a specific object detector
aimed at finding new instances of their corresponding
elements. Such a solution is illustrated in Figure 3.

Coarse Object
Detector

Training

Video

Detection
Class 1

Fine Object
Detector 1

Negative samples

Mixed object instances:
class 1 … class N

Clustering

Separated object classes:
class 1 … class N

Training Detection
Class K

Fine Object
Detector K

Training Detection
Class N

Fine Object
Detector N

Figure 3: Block diagram of a framework to simultaneously
train multiple dominant object detectors in an unsupervised
fashion.

3.1. Extension from the single object class case towards
the multi-class case

In [9], in order to optimize the COD output, we first
collected the long-term statistics of the moving blobs
corresponding to the dominant object class and modeled the
perspective deformation of one of its simple dimensional
features. Using this perspective model, further instances of
the “proper” moving blobs are extracted. Figure 4 shows the
result of applying this COD concept to the sequence
illustrated in Figure 2. As in this sequence two dominant
object classes appear, namely the pedestrians and the cars,
we expected that the difference in the dimensional feature
values obtained for the blobs of different object classes
would result in two perspective models, the outputs of
which could be fed into the corresponding clustering
modules. We noticed, however, that still one perspective
model is generated that results in mixed object samples as
shown in Figure 4. The reason for this bad COD output can
clearly be searched in the fact that the dimensional feature
used (blob height in this case) has values that are close for
both cars and people.

Figure 4: Output of the COD on the sequence in Figure 2.

An intuitive approach to compensate for the above could
be to use a more sophisticated dimensional feature.
Following this approach moves the complexity from the

3522

Clustering module to the COD, which – if done to the
extreme – would even eliminate the need for the refinement
of the COD results in the Clustering module and therefore
would make the Clustering module obsolete. However, the
drawback of introducing more sophistication in selecting the
dimensional features is inevitably the tuning of this feature
for a particular object class, which would reduce the generic
applicability of our framework.

Figure 5: Image patches corresponding to blobs appearing
in the scene of Figure 2.

We therefore propose an alternative approach to solving
the multi-class object detection problem, in which we
minimize the complexity of the COD and maximally rely on
the clustering module that we already defined robustly in [9]
and apply now to a more diverse set of candidate object
samples. In our new approach the COD reduces to the
detector of moving blobs (e.g. by background subtraction).
The blobs are rescaled to a size for a given ordinate using a
perspective distortion model [12]. The rescaling enables a
fair comparison between objects appearing far in the
background and the ones close to the camera. Examples of
such blobs and the corresponding objects from the scene in
Figure 2 are given in Figure 5. In the next step, these blobs
are submitted as inputs into the clustering algorithm that we
explain in more detail in the following subsection.

1{ , ..., }pX v v

Motion Sampled grid
on which
HOG are
computed

HOG
HOG

HOGHOG
HOG

Bag of
features

HOG
HOG

HOG

Another bag

Another patch

Similarity
measure

1{ , ..., }qY v v

(,)K X Y

Figure 6: Positive patch, corresponding motion and blocks
on which HOG features are computed. The set of features
per patch can be considered as a bag of features, with
different number of elements in it.

3.2. Separation into multiple object classes

3.2.1. Features

We base the clustering of the COD outputs on the HOG
features described in [3]. Being conceptually similar to
SIFTs [6], HOGs are densely sampled histograms of

oriented gradients. They are computed on blocks of size 8×8
as illustrated in Figure 6, and are represented by a vector
corresponding to frequencies of orientations of the gradient
in that particular block. Originally, Dalal et al. [3]
concatenate these blocks over a 4×4 block neighborhood.
We could also adopt this grouping, but this would imply
that the totality of blocks would be used to characterize a
given patch. The disadvantage would be the inclusion of
background parts to be taken into account. We resolve this
issue by only considering the blocks of the patches which
correspond to motion.

3.2.2. Similarity measure

We can represent each extracted patch as a collection x
of n-dimensional HOG vectors

1 2{ , ,..., ,.., }i px v v v v
where and p is the number of these vectors. The
similarity measure K(x,y) between two sets (bags of HOGs)
x and y is defined in [7] using the Bhattacharya kernel
between the two bags of features. The bags of features are
fitted with Gaussian distributions after being mapped in the
Reproducing Kernel Hilbert Space. Then, the problem of
measuring the distance between two bags of features is
transformed into a problem of measuring the distance
between two distributions. Note that x and y do not
necessarily have the same number of vectors, which
motivates our choice for a kernel function between
distributions estimated from samples [7]. The similarity is
computed for all (x,y) pairs which gives a matrix

n
iv

m mS where m is the total number of elements to be
clustered. To measure this similarity, we consider the HOGs
of the parts which correspond to motion. The motion
produced by an object is indeed a characteristic feature of
its shape. In the case of an object from another class, the
shape is different.

3.2.3. Clustering

A similarity-based clustering method is used to split the
COD output set into multiple clusters. Multiple variants of
clustering based on similarities are available in the free
PRTools package [11]. Concerning the number of clusters,
it has to be deduced from the spectrum of the similarity
matrix, or if not obvious from this spectrum, defined
manually.

3.3. Fine Object Detection

As in our previous approach [9], we selected the detector
presented in [3]. It uses SVM on densely sampled HOG
features. Initially used for pedestrian detection, we
demonstrated its effectiveness on other classes such as cars.

3523

5. CONCLUSIONS AND FUTURE WORK 4. RESULTS

We presented here a framework that can be used to separate
unlabeled object classes in an online and unsupervised
fashion. The only parameter needed to be specified by the
user is the number of clusters. To the best of our
knowledge, our framework is the first one addressing the
challenge of simultaneously training multiple object
detectors in an online and unsupervised way. The features
used in our approach were shown to be able to correctly
discriminate and cluster multiple classes in a surveillance
scenario. These classes are further used as a training set for
a robust detector.

Our initial experiments were conducted on the patches
extracted from a single video (cf. Figure 2). This is a
publicly available video used for performance evaluation of
surveillance-related algorithms [10]. Two videos of the
same scene at different moments are available. We used one
of them for training (13,167 frames) and the other for
testing (3,929 frames), which results in 17,096 frames for
the experiments. The scene involved in this video contains
pedestrians and cars as dominant object classes.

In total, via the COD, we extracted 689 potential training
example candidates from the sequence. Via annotation,
manually achieved for evaluation only, it appears that 543
of these correspond to single or multiple pedestrians, 119 to
single or multiple cars, and the remaining 27 are either a
mix of both or other objects (e.g. cyclist, bus). A similarity
matrix of the dimension 689 was computed and clustering
was performed to separate these into two classes. In this
particular experiment the number of clusters was not
automatically determined, but manually set to 2, as we
focused on the evaluation of the clustering and FOD
training processes. After a post processing step which takes
into account the perspective deformation for each class, the
number of positive training examples for the pedestrian
class was 457, and 106 for the car class.

In our future research, we will focus on expanding the
clustering framework to more than two classes, and on
determining the number of dominant object classes in the
scene in an automated fashion.

Acknowledgments: The authors wish to thank Dr. Robert
P.W. Duin for productive discussions and help with
implementing the clustering module.

6. REFERENCES
[1] V. Nair, J.J. Clark, “An Unsupervised, Online Learning
Framework for Moving Object Detection”, CVPR, 2004.

[2] A. Levin, P. Viola, Y. Freund, “Unsupervised Improvement of
Visual Detectors Using Co-Training”, ICCV, 2003.

The test set contains 236 pedestrian and 357 car
instances. The detection performance for both detectors is
given in Figure 7. The correct detection rate is respectively
about 60% and 80% for the pedestrian and car detector, for
one false alarm per image. The rate is relatively low but
acceptable for the pedestrian detector, and very good for the
car detector, considering that neither supervision nor initial
learning is required in our framework. Detection examples
are shown in Figure 8.

[3] N. Dalal, B. Triggs, “Histograms of Oriented Gradients for
Human Detection”, CVPR, 2005.

[4] O. Tuzel, F. Porikli, P. Meer, “Human Detection via
Classification on Riemannian Manifolds”, CVPR, 2007.

[5] B. Wu, and R. Nevatia. “Improving Part based Object
Detection by Unsupervised, Online Boosting”, CVPR, 2007.

0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

Number of false Alarms

C
or
re
ct
 d
et
ec

tio
n
ra
te

Pedestrian detection
Car Detection

[6] D.G. Lowe, ”Distinctive image features from scale-invariant
keypoints”, IJCV, 60, 2 (2004), pp. 91-110.

[7] R. Kondor and T. Jebara, “A Kernel Between Sets of Vectors”,
International Conference on Machine Learning, 2003.

[8] O. Javed, S. Ali, M. Shah, “Online Detection and Classification
of Moving Objects Using Progressively Improving Detectors”,
CVPR, 2005. Figure 7: ROC curve for the pedestrian and car detectors.
[9] H. Celik, A. Hanjalic, E.A. Hendriks, S. Boughorbel “Online
training of object detectors from unlabeled surveillance video”,
Online Learning for Classification Workshop, CVPR, 2008.

[10] Imagery Library for Intelligent Detection Systems (i-LIDS).

[11] prtools.org: The Matlab Toolbox for Pattern Recognition. (a) (b)
[12] H. Celik, A. Hanjalic, E.A. Hendriks, “On the development of
an autonomous and self-adaptable moving object detector”, AVSS,
2007

Figure 8: Some detection examples for the pedestrian
detector (a) and for the car detector (b).

3524

