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ABSTRACT

Object detection is a critical step in automated surveillance. 
A common approach to constructing object detectors 
consists of annotating large datasets and using them to train 
the detectors. However, due to inevitable limitations of a 
typical training data set, such supervised approach is 
unsuitable for building generic surveillance systems 
applicable to a wide variety of scenes and camera setups. In 
our previous work we proposed an unsupervised method for 
learning and detecting the dominant object class in a general 
dynamic scene observed by a static camera. In this paper, 
we investigate the possibilities to expand the applicability of 
this method to the problem of multiple dominant object 
classes. We propose an idea how to approach this 
expansion, and perform a proof-of-concept evaluation of 
this idea using a representative surveillance video sequence.   

Index Terms— Object detection, Surveillance, Pattern 
classification, Clustering, Unsupervised learning

1. INTRODUCTION 

Progresses in digital capture, storage and computing power 
in recent years have made smart automated monitoring and 
surveillance systems feasible. Consequently, new challenges 
arose in the computer vision and machine learning fields 
concerning the design of efficient and solid algorithms for 
tasks such as object detection, recognition and tracking. Our 
emphasis in this paper is object detection, which is the 
essential component of automated surveillance and 
monitoring solutions. 

The problem of object detection has typically been 
addressed through supervised, offline learning approaches, 
which resulted in an abundance of solutions for various 
object classes, scenarios and applications (e.g. [3, 4]). These 
existing detectors detect different object classes generally 
one at a time, and were proved effective in numerous cases. 
However, their performance is limited by the quality of the 
training data, which can be expressed by the extent to which 
this data covers the whole scope of deviations in object 
appearance specific for a given application context. These 
deviations typically result from occlusions and the changes 

in view point and lighting conditions. Compared to this, the 
unsupervised methods do not rely that heavily on the 
domain knowledge and could be able to adjust automatically 
to the peculiarities of the observed scene. One such method 
aiming at learning simultaneously two classes of objects 
dominating the scene is introduced and evaluated in this 
paper.

2. RELATED WORK AND CONTRIBUTION 

Levin et al. [2] developed a system learned in a semi-
supervised fashion using co-training. Two distinct detectors 
are used to train each other and improve the performance of 
the system. Likewise, Javed et al. [8] used co-training to 
improve the performance of an initial classifier by selecting 
new training examples using PCA. Still, both systems 
necessitate a non-negligible amount of supervision for 
labeling during initialization. In [1], Nair et al. presented a 
framework that uses a rough detector to collect training 
samples to train a pedestrian detector. Yet their rough 
detector is simply a manually pre-defined object size ratio. 
More recently, Wu et al. presented in [5] an approach to 
online (re)-training of a detector based on the outputs of an 
oracle (coarse detector) using boosting. As boosting focuses 
on difficult examples during training, this may cause 
instability if some examples are wrongly labeled. 
Furthermore, like [2], the method [5] also needs supervision 
for the initial stages, and it can only learn objects having the 
appearance very similar to the original samples. Nearly all 
mentioned approaches have been applied in one context 
only, e.g. for pedestrian or car detection, with the exception 
of Javed et al [8], where the same procedure applies for both 
pedestrians and cars. Compared to these methods, we 
presented in [9] a detector of dominant objects able to 
calibrate itself in an autonomous and robust fashion. This 
approach is online and unsupervised: it automatically 
obtains training samples from the input scene. 

All the approaches mentioned above deal with only one 
class of objects at a time. In surveillance scenarios, 
however, multiple object classes appear often at the same 
time, which requires simultaneous learning of multiple 
object detectors. 
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3. THE PROPOSED APPROACH 

In our previous work [9] we demonstrated the effectiveness 
of the unsupervised framework for learning the model of a 
dominant object class in a given surveillance video 
sequence and detecting all further instances of this object 
class in that sequence. As illustrated in Figure 1, the first 
component of this framework is a Coarse Object Detector 
(COD). The COD extracts information from the video of the 
observed scene and uses it to identify potential training 
examples of the dominant object class. In its advanced form, 
the framework may include a Clustering module, where the 
different training examples corresponding to different object 
classes are filtered and grouped together to provide reliable 
samples for training of the Fine Object Detector (FOD). 
While the COD uses simple object features to find candidate 
samples of object classes, the Clustering module is much 
more sophisticated and serves to refine the COD output by 
grouping the “good” candidates into one cluster and “bad” 
into the other. The good cluster is further used as a positive 
training set for the FOD. The negative set for training the 
FOD is obtained by randomly cropping image parts from 
the video in frames containing no motion, at different 
locations and scales. The trained FOD is then used to detect 
all further instances (also the stationary ones) of the 
dominant object class in new frames of the observed scene.  
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Figure 1: Block diagram of the framework [9] to train a 
dominant object detector in an unsupervised fashion. 

The framework in Figure 1 is applicable in many 
surveillance scenarios, where a single dominant object class 
can be identified. Typical examples of such a class are 
“people” in a shopping mall or at a railway station, or “cars” 
on a highway. However, the situations involving multiple 
dominant object classes are also frequent, as illustrated by 
the real world scene example in Figure 2 where both “cars” 
and “people” dominate, i.e. both are statistically relevant.  

Figure 2: Scene involving two dominant object classes 
(pedestrians and cars). 

In the remainder of this section we investigate to which 
extent it would be possible to expand the framework 
realization from Figure 1 into a multi-class object detection 
problem. We do this by modifying the post-processing 
(clustering) step following the COD in Figure 1. Instead of 
focusing on one “good” cluster only, we now target multiple 
“good” clusters of COD outputs. Subsequently, each of 
these clusters can be used to train a specific object detector 
aimed at finding new instances of their corresponding 
elements. Such a solution is illustrated in Figure 3.  
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Figure 3: Block diagram of a framework to simultaneously 
train multiple dominant object detectors in an unsupervised 
fashion. 

3.1. Extension from the single object class case towards 
the multi-class case 

In [9], in order to optimize the COD output, we first 
collected the long-term statistics of the moving blobs 
corresponding to the dominant object class and modeled the 
perspective deformation of one of its simple dimensional 
features. Using this perspective model, further instances of 
the “proper” moving blobs are extracted. Figure 4 shows the 
result of applying this COD concept to the sequence 
illustrated in Figure 2. As in this sequence two dominant 
object classes appear, namely the pedestrians and the cars, 
we expected that the difference in the dimensional feature 
values obtained for the blobs of different object classes 
would result in two perspective models, the outputs of 
which could be fed into the corresponding clustering 
modules. We noticed, however, that still one perspective 
model is generated that results in mixed object samples as 
shown in Figure 4. The reason for this bad COD output can 
clearly be searched in the fact that the dimensional feature 
used (blob height in this case) has values that are close for 
both cars and people.  

Figure 4: Output of the COD on the sequence in Figure 2. 

An intuitive approach to compensate for the above could 
be to use a more sophisticated dimensional feature. 
Following this approach moves the complexity from the 

3522



Clustering module to the COD, which – if done to the 
extreme – would even eliminate the need for the refinement 
of the COD results in the Clustering module and therefore 
would make the Clustering module obsolete. However, the 
drawback of introducing more sophistication in selecting the 
dimensional features is inevitably the tuning of this feature 
for a particular object class, which would reduce the generic 
applicability of our framework.  

Figure 5: Image patches corresponding to blobs appearing 
in the scene of Figure 2.

We therefore propose an alternative approach to solving 
the multi-class object detection problem, in which we 
minimize the complexity of the COD and maximally rely on 
the clustering module that we already defined robustly in [9] 
and apply now to a more diverse set of candidate object 
samples. In our new approach the COD reduces to the 
detector of moving blobs (e.g. by background subtraction). 
The blobs are rescaled to a size for a given ordinate using a 
perspective distortion model [12]. The rescaling enables a 
fair comparison between objects appearing far in the 
background and the ones close to the camera. Examples of 
such blobs and the corresponding objects from the scene in 
Figure 2 are given in Figure 5. In the next step, these blobs 
are submitted as inputs into the clustering algorithm that we 
explain in more detail in the following subsection. 
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Figure 6: Positive patch, corresponding motion and blocks 
on which HOG features are computed. The set of features 
per patch can be considered as a bag of features, with 
different number of elements in it. 

3.2. Separation into multiple object classes 

3.2.1. Features 

We base the clustering of the COD outputs on the HOG 
features described in [3]. Being conceptually similar to 
SIFTs [6], HOGs are densely sampled histograms of 

oriented gradients. They are computed on blocks of size 8×8 
as illustrated in Figure 6, and are represented by a vector 
corresponding to frequencies of orientations of the gradient 
in that particular block. Originally, Dalal et al. [3] 
concatenate these blocks over a 4×4 block neighborhood. 
We could also adopt this grouping, but this would imply 
that the totality of blocks would be used to characterize a 
given patch. The disadvantage would be the inclusion of 
background parts to be taken into account. We resolve this 
issue by only considering the blocks of the patches which 
correspond to motion. 

3.2.2. Similarity measure 

We can represent each extracted patch as a collection x
of n-dimensional HOG vectors 

1 2{ , ,..., ,.., }i px v v v v
where  and p is the number of these vectors. The 
similarity measure K(x,y) between two sets (bags of HOGs) 
x and y is defined in [7] using the Bhattacharya kernel 
between the two bags of features. The bags of features are 
fitted with Gaussian distributions after being mapped in the 
Reproducing Kernel Hilbert Space. Then, the problem of 
measuring the distance between two bags of features is 
transformed into a problem of measuring the distance 
between two distributions. Note that x and y do not 
necessarily have the same number of vectors, which 
motivates our choice for a kernel function between 
distributions estimated from samples [7]. The similarity is 
computed for all (x,y) pairs which gives a matrix 

n
iv

m mS  where m is the total number of elements to be 
clustered. To measure this similarity, we consider the HOGs 
of the parts which correspond to motion. The motion 
produced by an object is indeed a characteristic feature of 
its shape. In the case of an object from another class, the 
shape is different. 

3.2.3. Clustering 

A similarity-based clustering method is used to split the 
COD output set into multiple clusters. Multiple variants of 
clustering based on similarities are available in the free 
PRTools package [11]. Concerning the number of clusters, 
it has to be deduced from the spectrum of the similarity 
matrix, or if not obvious from this spectrum, defined 
manually. 

3.3. Fine Object Detection 

As in our previous approach [9], we selected the detector 
presented in [3]. It uses SVM on densely sampled HOG 
features. Initially used for pedestrian detection, we 
demonstrated its effectiveness on other classes such as cars. 
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5. CONCLUSIONS AND FUTURE WORK 4. RESULTS 

We presented here a framework that can be used to separate 
unlabeled object classes in an online and unsupervised 
fashion. The only parameter needed to be specified by the 
user is the number of clusters. To the best of our 
knowledge, our framework is the first one addressing the 
challenge of simultaneously training multiple object 
detectors in an online and unsupervised way. The features 
used in our approach were shown to be able to correctly 
discriminate and cluster multiple classes in a surveillance 
scenario. These classes are further used as a training set for 
a robust detector. 

Our initial experiments were conducted on the patches 
extracted from a single video (cf. Figure 2). This is a 
publicly available video used for performance evaluation of 
surveillance-related algorithms [10]. Two videos of the 
same scene at different moments are available. We used one 
of them for training (13,167 frames) and the other for 
testing (3,929 frames), which results in 17,096 frames for 
the experiments. The scene involved in this video contains 
pedestrians and cars as dominant object classes.  

In total, via the COD, we extracted 689 potential training 
example candidates from the sequence. Via annotation, 
manually achieved for evaluation only, it appears that 543 
of these correspond to single or multiple pedestrians, 119 to 
single or multiple cars, and the remaining 27 are either a 
mix of both or other objects (e.g. cyclist, bus). A similarity 
matrix of the dimension 689 was computed and clustering 
was performed to separate these into two classes. In this 
particular experiment the number of clusters was not 
automatically determined, but manually set to 2, as we 
focused on the evaluation of the clustering and FOD 
training processes. After a post processing step which takes 
into account the perspective deformation for each class, the 
number of positive training examples for the pedestrian 
class was 457, and 106 for the car class. 

In our future research, we will focus on expanding the 
clustering framework to more than two classes, and on 
determining the number of dominant object classes in the 
scene in an automated fashion. 
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Figure 8: Some detection examples for the pedestrian 
detector (a) and for the car detector (b). 

3524


