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ABSTRACT

We present an algorithm to improve trajectory estimation in net-
works of non-overlapping cameras using audio measurements. The
algorithm fuses audiovisual cues in each camera’s field of view and
recovers trajectories in unobserved regions using microphones only.
Audio source localization is performed using Stereo Audio and Cy-
cloptic Vision (STAC) sensor by estimating the time difference of
arrival (TDOA) between microphone pair and then by computing the
cross correlation. Audio estimates are then smoothed using Kalman
filtering. The audio-visual fusion is performed using a dynamic
weighting strategy. We show that using a multi-modal sensor with
combined visual (narrow) and audio (wider) field of view can en-
able extended target tracking in non-overlapping camera settings. In
particular, the weighting scheme improves performance in the over-
lapping regions. The algorithm is evaluated in several multi-sensor
configurations using synthetic data and compared with state of the
art algorithm.

Index Terms— TDOA, fusion, tracking.

1. INTRODUCTION

The use of multiple cameras for trajectory estimation in wide areas
is of great interest for many applications, such as surveillance and
sports analysis. In many scenarios the environment to be monitored
cannot be covered completely by a single sensor, hence multiple
cameras are used to observe the behaviour of the targets [1]. How-
ever, in many cases even multiple cameras cannot cover the whole
environment, thus reducing the number of target observations esti-
mated in the scene. The missing information can be estimated either
by a prediction based on the targets state in the cameras’ fields of
view and their motion dynamics [1, 2] or by using sensors with a
wider field of observation, such as the sound field of microphones,
as discussed in this paper. Audio sensors overcome some of the lim-
itations of visual sensors, such as bad lighting and visual occlusion
due to vegetation or dust. This makes a network of heterogeneous
sensors consisting of both cameras and microphones a desirable so-
lution for wider-area coverage. Each sensor in such a network can be
a simple Stereo Audio and Cycloptic Vision (STAC) sensor [3] con-
sisting of a camera mounted between a pair of microphones (Fig. 2).

This paper is organized as follows. An overview of the related
work is given in Section 2. The proposed trajectory estimation using
audiovisual fusion is discussed in Section 3. In Section 4 we show
some experimental results and there evaluation. Finally, in Section 5
we draw conclusions.

The authors acknowledge the support of the UK Engineering and Physi-
cal Sciences Research Council (EPSRC), under grant EP/D033772/1

Fig. 1. Flowchart of the proposed audiovisual tracking algorithm
(Key. STAC: Stereo Audio Cycloptic Vision; TDOA: time difference
of arrival; Mi1 and Mi2: pair of microphones; Gi: camera; AV:
audiovisual).

2. RELATED WORK

Video-based tracking faces several challenges due to factors such as
local and global illumination change and visual occlusions. To over-
come these issues sound source tracking has been studied [4]. The
detection of a sound source is performed using either time difference
of arrival (TDOA) or beamforming. The former performs localiza-
tion by estimating delays between pair of microphones whereas,
later maximizes steered response of a beamformer for localization.
Audio modality also suffers from environmental factors such as
background noise, reverberation and reflections. It has been shown
that information from heterogeneous sensors such as cameras and
microphones can be fused in a unified manner both at sensor level [5]
or at feature level [6]. This fusion of modalities can compensate for
the failure of each other and is used in target localization and track-
ing in indoor and outdoor scenarios using a network of audiovisual
sensors.

In indoor scenarios, active speaker localization and tracking in
meeting rooms can be done by using audiovisual fusion where audio
localization is done using beamforming and visual target is tracked
using Kalman filter [7] or by using TDOA with Particle filter [8].
Tracking using audio modality is strongly effected by reverbera-
tion. In [3] the audiovisual tracking algorithm [8] is improved by
using Weighted Probabilistic Data Association filter (WPDA) which
takes into account the weighted probability of detections and en-
hance the performance in reverberation scenarios. Multiple mov-
ing target tracking in surveillance scenarios can also benefit from
fusion of modalities by applying fusion using iterative decoding al-
gorithm based on the theory of turbo codes and factor graphs. The
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Fig. 2. Stereo Audio and Cycloptic Vision (STAC) sensor.

turbo codes uses two simple codes working in parallel to achieve
higher performance. In case of multimodal tracking, multiple cues
serve as two simple codes and turbo code is used to improve perfor-
mance. In outdoor scenarios, the use of audio can help in case of
visual occlusions due to dust or vegetation. In [9] TDOA is used to
have an estimate of the target location which is then refined using
visual cues under a particle filtering framework for tracking of tanks
in the presence of dust and clutter. One of the challenges in using
multiple modalities is synchronization. A joint audiovisual filter is
used to address the synchronization issues where a sliding window of
direction-of-arrival forms the audio observations whereas, adaptive
appearance model is used for visual observations and synchroniza-
tion is handled using a delay variable in the state.

Most of the multi-modal tracking algorithms uses audio in the
camera’s field of view only for compensating failures in video. In
this work we exploit the audio modality to estimate trajectories in
regions outside the camera’s field of view (FOV). The missing visual
observations are compensated by audio using multiple microphones
having wider field of observation. The trajectories are generated us-
ing video only or joint audiovisual data over wide-area. In case of
joint audiovisual data we also propose a dynamic weighting strategy
based on the arrival angle and the target-sensor distance. The flow
diagram of the framework is shown in Fig. 1.

3. TRAJECTORY ESTIMATION AND FUSION

Let a wide-area be monitored by a set G = {G1, . . . , GN} of N
cameras with non-overlapping fields of view (FOV). Let each cam-
era be equipped with a microphone pair, with M = {M1, . . . , MN}
being the set of N microphone pairs, where Mi = (Mi1, Mi2). We
assume that the microphones’ sound field is wider than the corre-
sponding cameras’ field of view and that the sound field of multiple
microphone pairs Mi overlap each other (Fig. 3). Let each target
generate a sound which is received at the microphones after a cer-
tain attenuation and delay. Let y(t) be a sound wave generated by
the source containing fs/nv samples, where fs is the sampling fre-
quency and nv is the number of video frames per second. This signal
reaches the Stereo Audio Cycloptic Vision (STAC) sensor (Fig. 2),
consisting of a camera mounted between two microphones, at a cer-
tain arrival angle θ. Let the audio signals received at two micro-
phones be defined as

ŷ1(t) = Γ1y(t + n) + N1, (1a)

ŷ2(t) = Γ2y(t + n + τ) + N2, (1b)

where Γ1 and Γ2 are the attenuation factors; n is the delay, in sam-
ples, occurred for the signal to reach the first microphone Mi1; τ is
the extra delay, in samples, for the signal to reach the second micro-
phone Mi2; and N1 and N2 are the process noise added to the signal
which is assumed to be zero mean Gaussian with unit variance. The
attenuation Γ is calculated using the Beer-Lambert law 1, to mimic

1http://elchem.kaist.ac.kr/vt/chem-ed/spec/beerslaw.htm Last accessed:
29 Sep, 2009
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Fig. 3. Sample network of multi-modal sensors. (Key. Oi targets;
Mi1 and Mi2: microphones; Gi: camera; circles: sound field; trian-
gles: field of view).

Fig. 4. Target localization using TDOA with multiple STAC sensors.
Red and green lines: ground truth; blue and black line: estimated
trajectories. Grey squares: overlapping regions; black dashed lines:
audio source localization using arrival angles with 3 STAC sensors.

real world signals, as

Γi = Γ0 exp(−αLMij ). (2)

where Γi is the attenuation for ith microphone, Γ0 is the initial sound
intensity and LMij is the path length between the ith microphone

and jth object.
In case of synthetic data the observation generated in camera’s

FOV gives video target location information. The audio signals re-
ceived at each microphone couple (Mi1, Mi2) at each time step are
used to compute the time difference of arrival (TDOA) τ of the au-
dio signal for estimation of arrival angle θ for target localization in
regions covered by the cameras’ FOVs as well as in the uncovered
areas (Fig. 4). The TDOA is estimated by computing the cross cor-
relation of the two audio signals (ŷi1(t) and ŷi2(t)) as

R̂ŷi1ŷi2(f) = F(ŷi1)(f)∗ ×F(ŷi2)(f), (3)

where F indicates the discrete Fourier transform and ‘∗’ indicates
complex conjugation. Then the arrival angle, θi is estimated as
θi = arccos(vcτ/LMi), where vc is the speed of sound in air and
LMi is the distance between the two microphones. After the estima-
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Fig. 5. Arrival angle and localization error analysis. Blue dotted line:
error; green solid line: fitted polynomial. (a) Example of increase in
the error in the arrival angle when the target moves closer than 5m
from the sensor. This error is due to the violation of the parallel line
propagation assumption. (b) Example of increase in the localization
error with the decreasing of the angle between the intersecting lines
from two STAC sensors.
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Fig. 6. Examples of audiovisual fusion. Grey square: field of view
of a camera; white background: regions unobserved by a camera;
green circles: ground truth; blue asterisk: audiovisual fusion with
equal weights (i.e., γ = 0 in Eq. 4); Magenta squares: audiovisual
fusion with dynamic weights computed using Eq. (4).

tion of the arrival angle θi, we apply audio-audio fusion to estimate
the targets position. A line is projected from the mid-point of the two
microphones in the direction θ from each STAC sensor and the in-
tersection of these lines from multiple STAC sensors gives the target
position. However, this localization can be erroneous and the error
increases as ρ → 0 (Fig. 5(b)) or as ρ → 180, where ρ is the angle
between the two intersecting lines. The minimum localization error
is achieved at ρ = 90. The estimation done by the pair of STAC
sensors for 147o < ρ < 33o is ignored and the information from
other STAC pairs is used. The audio performance also decreases as
the target moves closer than 5m from the sensor as the assumption of
parallel sound waves in TDOA estimation will no more be valid. In
case no STAC sensor is able to provide the localization information,
we apply trajectory estimation using the first order motion model as
x(t + 1) = x(t) + Uν(t) + N (μ, Σ) where ν(t) = (0, νx, 0, νy).
The audiovisual fusion is then performed within Kalman filtering by
taking a weighted sum of the two observations as γoν

i + (1 − γ)oa
i
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Fig. 7. Examples of audio only trajectory estimation using TDOA
followed by correlation and fusion within Kalman filter. Red dots:
estimated target position using audio; green dashed line: ground
truth; blue solid line: Kalman filter output.

where γ is computed as

γ =

⎧
⎨
⎩

1 video only
0 audio only
0.5 + 0.25 (ψ(de) + ψ(ρ)) otherwise

, (4)

where ψ(de) is a 25th order polynomial fitted over the normalized
error in the estimation of the arrival angle θ with respect to the Eu-
clidean distance de between the target and the microphone pairs
(Fig. 5(a)) and ψ(ρ) is a 9th order polynomial fitted over the nor-
malized error in localization based on ρ (Fig. 5(b)). This weighting
mechanism will only penalize audio detections in overlapping re-
gions and will give a weight of at least 0.5 to the video modality, if
available.

This weighting has contributed to a 13.17% error reduction.
Moreover, the error standard deviation has also decreased by approx-
imately 1 decimal place (when evaluated on 50 randomly generated
trajectories, each consisting of 1500 points and a total of 2928 points
in the visible region of a single sensor in a network of 3 STAC sen-
sors). Figure 6 shows examples of the obtained improvement using
this dynamic weighting technique compared to using equal weights
for both modalities. The trajectories estimated from the audio are
further smoothed using Kalman filter (Fig. 7).

4. EXPERIMENTAL RESULTS

To analyze the benefits of audiovisual tracking, we performed
the comparison with (i) audio only tracking (TDOA), (ii) video
only tracking (CLUTE [2]), (iii) audiovisual fusion using dynamic
weighting (AV), and (iv) audiovisual fusion using dynamic weight-
ing with trajectory smoothing using Kalman filter (AVKF). To
evaluate the robustness of each algorithm we further performed the
test with missing audio observations.

The trajectory estimation was performed with 4 different sen-
sor configuration consisting of 2, 3, 4 and 5 STAC sensors, respec-
tively. The evaluation is performed on 181 trajectories containing
approximately 2200 points each (see Fig. 8). All the trajectories
pass through the FOV of each STAC sensor to have fair comparison
with [2]. These trajectories are generated using visual and audio sig-
nals. The audio data are generated by transmitting an audio signal
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Fig. 8. Sample synthetic trajectories for 2 targets in a network of 5
STAC sensors.

(impulse train) from the position of the target and then recording it
at the sensor location after applying environmental constraints (see
Section 3). Synthetic video data are generated using a first-order
motion model defined as

x(t + 1) = Ux(t) + N (μ, Σ), (5)

where U is the observation model which ensures smooth transfor-
mation of the target state at time t to the next state at time t + 1 and
is defined as

U =

⎡
⎢⎣

1 0.35 0 0
0 1 0 0
0 0 1 0.35
0 0 0 1

⎤
⎥⎦ , (6)

where 0.35 is chosen to maintain slow target speed. N (μ, Σ) is a
zero-mean Gaussian noise and serves as a process noise to introduce
small variation in the motion. The covariance Σ of this process noise
is defined as

Σ = diag[10−10, 10−6, 10−10, 10−6]. (7)

Table 1 shows the mean (μ) and standard deviation (σ) of the trajec-
tory estimation error for TDOA, AV, AVKF and CLUTE. The esti-
mation error is the Euclidean distance between the estimated and the
true target position. The algorithm is also evaluated with approxi-
mately 50% randomly missing audio observation as in real data the
targets will not be producing continuous audio signal. The error after
applying smoothing using Kalman filtering is increased compared to
TDOA and AV Fusion only. This is mainly because Kalman filter-
ing estimation deteriorates when the target exhibits sharp turns. The
error in trajectory estimation with audiovisual data is due to the ap-
proximation in computing delay in samples. The delay is estimated
in seconds since the delay can only be by a discrete number of sam-
ples. Hence this rounding off introduces a quantization effect (Fig. 7)
and creates an error of maximum 0.2233◦ (considering a rounding
off error of 0.5 samples at 44.1kHz) in the arrival angle estimation.
This error can be reduced by increasing the sampling frequency. Ta-
ble 1 also shows that with missing audio observation there is an in-
crease in error by 0.017 units for Kalman filtering on AV Fusion for
5 STACs, whereas the increase in mean error for AV Fusion for 5
STACs is 0.018. This increase of a small value indicates that audio
estimation can also be used for complete path estimation in case of
non-continuous audio observations. Note that the error for CLUTE
remains the same as it does not depends on audio observations.

Table 1. Accuracy comparison for trajectory estimation using
method A (TDOA), B (AV), C (AVKF) and D (CLUTE) (see text for
definitions) using 2,3,4 and 5 STAC sensors without(W)/with miss-
ing(M) audio observations

number of sensors

5 4 3 2

W M W M W M W M

A μ 0.037 0.057 0.041 0.062 0.056 0.077 0.460 0.483

σ 0.066 0.094 0.078 0.104 0.111 0.140 0.524 0.543

B μ 0.027 0.046 0.031 0.050 0.043 0.062 0.407 0.483

σ 0.045 0.065 0.056 0.076 0.076 0.096 0.481 0.543

C μ 0.518 0.534 0.518 0.535 0.519 0.536 0.768 0.483

σ 0.292 0.301 0.292 0.301 0.292 0.302 0.531 0.543

D μ 4.456 4.456 5.376 5.376 6.136 6.136 6.424 6.424

σ 4.078 4.078 5.565 5.565 6.418 6.418 9.716 9.716

5. CONCLUSIONS

We have shown that audio can be used in a multiple non-overlapping
camera setting to estimate track information in regions unobserved
by visual sensor, and presented a trajectory estimation algorithm for
wide-area surveillance. It is also demonstrated that using sensors
with a large coverage area together with cameras enables extended
target tracking. Future work include evaluation on real data and the
extension of the proposed approach for improving target hand-over
across multiple cameras and event detection.
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