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ABSTRACT 

 
This paper studies the feasibility and investigates various choices 
in the application of compressive sensing (CS) to object-based 
surveillance video coding. The residual object error of a video 
frame is a sparse signal and CS, which aims to represent 
information of a sparse signal by random measurements, is 
considered for coding of object error. This work proposes several 
techniques using two approaches- direct CS and transform-based 
CS. The techniques are studied and analyzed by varying the 
different trade-off parameters such as the measurement index, 
quantization levels etc. Finally we recommend an optimal scheme 
for a range of bitrates. Experimental results with comparative 
bitrates-vs-PSNR graphs for the different techniques are presented1 
Index Terms - Surveillance video, Object-based coding, 
Compressive sensing 
 

1. INTRODUCTION 
 
Compressive sensing is an emerging field which aims to measure 
sparse and compressible signals at close to their intrinsic 
information rate than what is considered necessary according to 
Nyquist criterion. In this work, we have presented an application 
of compressive sensing for coding of indoor surveillance video. A 
major aspect of any surveillance system is to efficiently compress 
the long hours of video to facilitate archival or networking. 
Identification of objects in motion through segmentation is 
essential for surveillance and in such a video codec, an arbitrary 
shaped moving object is described using two features: texture and 
shape. [1][2] are some previous work on MPEG-4 object based 
encoding for surveillance video and [6] describes the framework 
on which this work is based on. The aim of this work is to explore 
compressive sensing on motion-compensated object error (Eq 5), 
i.e. random measurements on the residual object error, to represent 
the texture information for arbitrary-shaped objects. Any signal 
x in N can be represented in terms of orthogonal basis vectors 
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where 1 2 3: [ | | | ... ]N is obtained by stacking the basic 
vectors as columns, and S is a column vector of weighting 
coefficient. x and S are equivalent representations of the same 
signal in the time domain and domain respectively.  Either the 
signal x  is sparse in time domain or there exists a ‘compressible’ 
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domain in which the signal can be approximated by K large 
coefficients. It is based on the revelation that a small group of non-
adaptive linear projections of a sparse signal contains enough 
information for reconstruction and processing [3].   
y x S                (2) 

is a M N measurement matrix where M N . Thus CS 
requires a stable measurement matrix  that ensures the 
important features of the sparse signal are not damaged by the 

dimensionality reduction from Nx  to My . The  
matrix is mostly chosen as a random matrix in which the matrix 
elements are drawn from independent and identically distributed 
variables of zero mean [4]. Different reconstruction algorithms are 
developed [3][4] to recover the original signal x from the random 
measurements y, one of them being the stage-wise orthogonal 
matching pursuit algorithm [5], which is used in our work, since it 
is fast with little sacrifice in performance.  

The paper is organized as follows: section 2 analyses the 
characteristics of residual object error, section 3 describes the 
proposed CS framework with the different schemes in detail with 
experimental results, section 4 highlights the comparisons between 
the schemes, and section 5 concludes the paper.  

 
2. ANALYSIS OF RESIDUAL OBJECT ERROR 

 
In our surveillance video coding, shadow-less object segmentation 
is achieved using frame ratio pixels, edge maps and morphological 
operation based correction [7]. It is followed by an object-based 
motion estimation using the sum of squared differences (SSD) [6], 

~
2

1arg min [ ( ) ( )]ssd
j j n j n ju M f u x f x

u W
     (3) 

where, j  is the object count in a frame, ssd
ju is the motion vector 

for the jth object, jM  is the binary object mask obtained from the  
segmentation, jx is the location of the object in the nth frame, 

1nf is the previously reconstructed frame, nf is the current frame 
and W is the search window.  The motion vector thus obtained is 
used to reconstruct the current frame from the previously 
reconstructed frame by the object-based motion compensation  

~
1ˆ [ ( )]ssd

n bg j j j n j j

j

f I M M f u x    (4) 

n̂f is the current reconstructed frame and jM  is the binary 
complement of the object mask jM . The background image bgI , 
assumed to be known a priori, is substituted in the reconstructed 
image in places other than the object mask. The motion 
compensated object error for each object j in nth frame 

ˆ( )j j n nM f f       (5) 
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needs to be coded along with the motion vector, in order for a 
complete reconstruction of the frame at the decoder. 

The two distinct characteristics of the object error are 
inherent sparsity and arbitrary shape. The object error (Eq 5) has 
sparse representation i.e. percentage of significant values in the 
array is very less. An accurate motion-compensated object (precise 
motion vector) will have object error with significant values only 
along the boundary of the object. Thus the location of the 
significant values depends on the efficiency of the motion-
compensation algorithm.  
 

3. PROPOSED CS BASED VIDEO CODING 
 
In this section we describe the few variations of the proposed CS 
based video coding framework. A diagrammatic            
representation of the proposed general framework spanning these 

variations is shown in Fig 1. The object error ( j ) may or may 
not go through a transform stage. When the transform is present, 
some of the transform coefficients may be quantized and 
transmitted separately, giving rise to a hybrid coder. The object 
error or the (remaining) transform coefficients are vectorized from 
2D to a 1D-array for further processing.  
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Fig1: Proposed CS framework for surveillance video encoder 

It is shown in previous works of Donoho and Tanner [6] that 
the number of measurements ~ 2 log /M K N K  is a sharp 
threshold for successful reconstruction, where N is the length of 
the signal and K is the number of significant coefficients.  It was 
observed that the sparsity ratio /K N  of object error array varies 
across video frames in a sequence and also between objects in a 
single frame and hence in this work, the number of measurements 
is calculated as max( , log( / ))M rK rK N K  where r is termed as 
measurement index. The random measurement vector y is 
observed to have Gaussian density with the distribution peaking at 
mean zero because of the sparse nature of the object error signal, 
and having different variances for varying object sizes within a 
frame and across the frame sequence. 

In a fixed camera indoor gray-level surveillance video the 
background frame is constant except for occasional illumination 
changes. Results obtained in this work are using video sequence 
obtained from CAVIER [12] averaged over 100 frames and with 
multiple objects in a frame. The knowledge of the background 
frame is known a priori (frame with no objects is used). For robust 
scenario, the background may be statistically modeled using 
algorithms such as [9] and shared between the encoder and 
decoder periodically. Also the dimension of each object is 
approximately 2% of the total frame area. Since the PSNR from 

the background area is not relevant in surveillance video 
compression performance, in this work, we study the object-PSNR 
of the segmented mask of the object instead of the frame PSNR. 

The CS measurements may be quantized using uniform or 
non-uniform quantizer. Table 1 compares the bitrate-vs-object-
PSNR for uniform quantizer ( =8) and optimum Lloyd-Max non-
uniform Gaussian quantizer [10] for quantization level L=8.  

r Uniform Q Lloyd-Max Q (L=8)  
Bitrate PSNR Bitrate PSNR 

1.5 6590 27.91dB 5503 26.87dB 
2 7692 33.27dB 7053 31.23dB 

2.5 8858 36.37dB 8617 34.49dB 
3 9981 37.91dB 10165 36.64dB 

Table 1: Uniform Q vs Lloyd-Max Q for L=8 
Arithmetic coding performed after uniform quantization 

exploits the probability distribution and hence gives better coding 
performance. But given the non-stationarity of surveillance video, 
a non-uniform Gaussian adaptive quantizer, adapting to the 
variance of the distribution, is likely to be more robust, hence it is 
used in our experiments. The following are the transmitted 
parameters for each video frame in a CS framework: 

1. Motion vectors for different objects in the video frame 
2. Location (top left coordinate and size of the bounding 

box) and shape (chain coded boundary through entropy 
coding) of the objects 

3. Dimensions of the measurement matrix for each object  
4. Compressive sensing coefficients (and transform 

coefficients) 
5. Variance of the CS measurements for adaptive quantizer 

3.1. Direct CS coding of object error 
To the object error, a lower threshold is applied in order to 
construct a sparse matrix by eliminating insignificant values and 
converting them to zero. This sparse signal is subjected to CS. 

 
Fig 2. Bitrate vs Object-PSNR for direct CS for different L 
(different points on each L line correspond to r=1.5,2,2.5,3)  
 The measurement index r and the numbers of quantization 
levels L are varied and the bitrate-vs-object-PSNR curve is shown 
in Fig 2. It can be observed from the graph that the R-D curve for a 
fixed L and increasing r give a better object PSNR for a 
corresponding bitrate rather than keeping the measurement index r 
a constant and increasing just the number of quantization levels. 
Changing both r and L is necessary to ensure best PSNR over 
different bitrates, however it can be observed that r around 2.5 
gives optimal performance. 
3.2. DCT based CS coding of object error 
Discrete cosine transform is applied on the object error and the 
coefficients are thresholded to construct a sparse matrix. The 
threshold Th used is a percentage of the absolute maximum value 
of the transform coefficients. Two different types of DCT are 
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applied on the object error. Then CS is applied on the thresholded 
DCT coefficients.  
Whole-object DCT CS: Since the object size in the frame is small, 
DCT of the whole error block is taken. 
Block-wise DCT CS: The object error is divided into 8x8 sub 
blocks, and smaller sub blocks at the boundary if required and 
separate DCT is applied for each block.  

 
Fig 3: Bitrate vs object-PSNR for direct CS, whole-object DCT CS 
and block-wise DCT CS for r=2.5, Th=10% (points: L=2,4,16,32)  

Fig 3, compares the DCT CS coders with the direct CS coder 
for r=2.5 (optimal rate mentioned in 3.1) and varying L. We 
observe that the DCT CS coders peform worse than the direct CS. 
The block-wise DCT CS is better than the whole-object DCT CS 
scheme since the spatial correlation of the object error is better 
exploited in non-boundary subblocks. 
3.3. Wavelet based CS coding of object error 
In this subsection we investigate a few variations of wavelet based 
CS coding scheme. 
Regular wavelet CS:  Discrete wavelet transform is applied on the 
object error. Daubechies 9/7 biorthogonal wavelet is used in our 
experiments since it has linear phase and is found to perform well 
in image compression. Two levels of wavelet decomposition are 
used. A threshold is then applied on the wavelet transform 
coefficients to create a single sparse array by merging all bands 
and CS is applied. The number of CS measurements M is obtained 
from the N, K values of the object, varying measurement index r.  
Multiscale wavelet CS: For better representation of the wavelet 
coefficients, wavelet bands at different levels are no longer merged 
but treated separately in a fashion similar to [11]. The scaling 
coefficients are uniformly quantized using a step size (and 
entropy coded) and transmitted separately. The number of CS 
measurements is determined as a ratio of the size of the object 
error M N . These CS measurements are distributed between 
wavelet coefficients of different levels of decomposition. Since 
two levels are used, 1/4th and 3/4th of the measurements are used 
for the second level and first level wavelet coefficients 
respectively. A threshold is used before CS measurements. 
Hybrid wavelet CS: In this technique the scaling coefficients are 
separately quantized and transmitted as in the multiscale wavelet 
CS. However, independent assignment of CS measurements at 
different levels of wavelet decomposition is avoided. This is 
because, it is better to compress a sparse signal as a whole rather 
than in parts. Therefore, all wavelet coefficients (except the scaling 
coefficients) are merged together before thresholding and CS 
measurements. 
Performance of wavelet schemes: Fig 4 shows the results of 
regular wavelet CS obtained by varying r and L for Th = 10%. It is 
observed that similar to direct CS, r=2.5 gives optimal R-D 
characteristics.  

 
Fig 4: Bitrate vs object-PSNR for regular wavelet CS for varying r, 
Th=10% (points: L= 4,8,16,32) 
Fig 5 shows the R-D performance of the multiscale wavelet CS 
coder for varying values of measurement ratio and quantization 
levels L. It is observed that =1 is a good choice for the bitrate of 
6000 to 15000 bits per frame. 

 
Fig 5: Bitrate vs object-PSNR for multiscale wavelet CS for 
varying with =8, Th=10%. (points: L= 4,8,16,32) 

The hybrid wavelet CS coder is observed to perform better 
than the multiscale wavelet CS at all bitrates and the regular 
wavelet CS at higher bitrates. Consequently, we investigate the 
hybrid wavelet CS coder in more detail in the rest of this section. 
For the hybrid wavelet CS, experiments are performed by varying  
the quantization step size for the scaling coefficients.  

L = 8 = 4 = 2 
Bitrate PSNR BitRate PSNR BitRate PSNR 

16 9214 36.48dB 9423 36.42dB 9692 36.57dB
32 11183 37.18dB 11370 37.25dB 11636 37.27dB

Table 2: Bitrate vs object PSNR for varying value in hybrid 
wavelet CS for r=2.5, Th=10% 
It was noticed that =8 is a good choice as seen from Table 2. 
This is because the object error is high pass and hence the scaling 
coefficients have less energy and a large  may be used.  

 
Fig 6: Bitrate vs object-PSNR for hybrid wavelet CS for varying 
Th with =8 (lines: L=4,8,16,32 , points r=2,2.5,3) 
Next, R-D performance of the hybrid wavelet CS is experimented 
by keeping =8 and varying r, L, and threshold Th (=5%,7.5%, 
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10% of the absolute maximum value). Fig 6 summarises the 
results. It may be observed that, as before, to obtain the best R-D 
performance across different bitrates, it is necessary to change all 
the parameters r, L and Th- smaller r(=2,2.5), smaller L(=4) and 
larger Th(=10%) are better at low bitrates (  8000 bits per frame), 
however larger r(=3), larger L(=16,32) and smaller Th(=5%) is 
preferable at higher bitrates (  10000 bits per frame). 

 
4. COMPARITIVE STUDY 

 
In this section we compare the results of different CS techniques 
explained in detail previously and recommend an optimal 
operating technique amongst them.  The comparison graph shown 
in Fig 7 plots the optimal operation curves for the different 
techniques adapting  parameter values for  r, L, and Th.  

 
Fig 7: Comparitive bitrate vs PSNR between the techniques 
Since the wavelet transform gives better energy compaction 

than DCT, it is observed that CS works better with DWT. At low 
bitrates, the hybrid wavelet CS and regular wavelet CS works 
better than direct CS as the wavelet transform creates a sparser 
array for CS than the original object error. Regular wavelet CS 
performs well initially but becomes worse than the hybrid scheme 
after 35 dB PSNR. This is because for larger CS measurements, 
the hybrid technique represents the wavelet coefficients (high pass) 
of object error (which is inherently highpass) better, and scaling 
coefficients are transmitted separately. At low bitrate, scaling 
coefficients are also sparse and hence well presented by regular 
wavelet CS. Hybrid scheme performs better that multiscale 
wavelet as the CS measurements are applied to all the wavelet 
bands merged together unlike the multiscale CS. Beyond 10k 
bits/frame direct CS perfoms better than other schemes. In 
conclusion, wavelet CS (hybrid scheme, since it is close or better 
than the regular wavelet) is best at low rates, while direct CS is 
best at higher rates.  

From Fig 8, we observe that the bitrate variation is moderate 
for both the schemes except after frame 90 (when the two objects 
of the video merge into one object), where the direct CS has lesser 
variation.  The typical PSNR variation is 29.87dB to 40.74dB for 
direct CS and 27.4 dB to 39.5dB for hybrid wavelet CS. Fig 9 
gives an example of reconstructed frame. 

 

Fig 8: Framewise bitrate for direct CS and hybrid wavelet CS for 
r=2.5, L=8, =8, Th=10% for 100 frames of “walk” video 

            
Fig 9: Reconstructed frame and objects using direct CS r=2.5, L=8 
 

5. CONCLUSIONS 
 
An application of CS for surveillance video coding is discussed 
using different techniques such as direct CS and DCT/DWT based 
CS and compared. The hybrid wavelet CS is found to work better 
at lower bitrates and direct CS for higher bitrates. Different 
parameters such as measurement index r, quantization levels L, 
intervals of Lloyd-Max quantizer (adapted based on variance), 
step-size of scaling coeffcients , threshold on wavelet 
coefficients Th are varied for robust performance of the system. In 
this work we target coding only the texture of the object error with 
shape explicitly coded using chain code. In future, we aim to 
revive the object shape using implicit shape coding at the decoder.  
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