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ABSTRACT
Information theory provides an attractive framework for attacking
the neural coding problem. This entails estimating information the-
oretic quantities from neural spike train data. This paper highlights
two issues that may arise: non-parametric entropy estimation and
non-stationarity. It gives an overview of these issues and some of
the progress that has been made.

Index Terms— entropy, estimation, nervous system, informa-
tion theory

1. INTRODUCTION

Neurons propagate signal by generating sequences of electrical
pulses, or more simply, spike trains. Understanding how informa-
tion is represented and transformed in the nervous system is the
central concern of neural coding. One appealing approach to neu-
ral coding (summarized in [1]) borrows concepts from Shannon’s
theory of communication and makes precise the vague notion of
‘information,’ in terms of entropy and mutual information [2].

2. DIRECT METHOD

A widely used method for estimating information directly from neu-
ral spike train data (see for instance [3, 4, 5] ) is the aptly named
‘direct method’ [6]. A typical neurophysiology experiment where
the direct method is applied consists of repeated presentations of a
time-varying stimulus while simultaneously recording neural activ-
ity. The stimulus can be physical, for example sound and movies,
or it can be abstract like an arm movement task. Figure 1 shows an
example of data from such an experiment.

Though neural spike trains are naturally represented by point
processes, the direct method makes them discrete by quantizing time
at a precision of Δt and considering the pattern of spike counts in
time windows of size T , either overlapping or non-overlapping. The
number of spikes that occur in each bin become letters in a K-letter
word, where K = T/Δt. See Figure 2 for an illustrated example in
the non-overlapping window case.

Consider the stochastic process {St, X
k
t } representing the value

of the stimulus (St) and windowed response (Xk
t ) at time t =
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Fig. 1. Each row of the raster plot (above) shows the pattern of
spiking of a Field L neuron of an adult male Zebra Finch in response
to 1 of 10 repeated presentations of the natural bird song (below).
Data from [3].

1, . . . , n during presentation (or trial) k = 1, . . . , m. Given the re-
sponses {Xk

t }, the direct method considers two different entropies:
(1) the total entropy H of the response, and (2) the local noise en-
tropy Ht of the response at time t. The total entropy,

H = −
X

x

P̄ (x) log P̄ (x),

is associated with the distribution P̄ (x) of words across the entire
experiment—the entire raster plot, while the local noise entropy,

Ht = −
X

x

Pt(x) log Pt(x),

is associated with the distribution Pt(x) of words across trials at a
fixed time t—a column of the raster plot. These entropies are esti-
mated directly from the neural response, and the direct method in-
formation estimate is the difference between the total entropy and
the average (over t) noise entropy.

H and Ht depend implicitly on the size T of the time win-
dow and the time resolution Δt. Normalizing by K = T/Δt
and considering large T leads to the total and local entropy rates
(at precision Δt) that are defined to be limT→∞(H/T )Δt and
limT→∞(Ht/T )Δt, respectively, when they exist. Their rate of
convergence depends implicitly on the range of dependence in the
response process. Furthermore, the phenomenon under investigation
will often involve a fine time resolution Δt. Often an approximation
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Fig. 2. A spike train is discretized into Δt = 1 msec bins and
represented by a binary sequence. The bits in the binary sequence
are grouped into non-overlapping windows of length T = 10 msec
and divided into K-letter words X1, X2, . . . where K = T/Δ.

is made by choosing sufficiently small Δt, large T , and then extrap-
olating. Large T and small Δt necessitate large K. As the number
of potential words is exponential in K, the estimation of entropy can
be challenging for large K.

3. ENTROPY ESTIMATION

Consider the conceptually simpler problem of estimating the entropy
of a discrete distribution P (x) over a set of words of unknown car-
dinality s = #{x : P (x) > 0} (potentially infinite). In the most
basic case the observations (Xt) are assumed to be independent and
identically distributed (i.i.d.) according to P (x).

An apparent method of estimating the entropy is to apply the en-
tropy formula after estimating P (x), but estimating a discrete prob-
ability distribution is, in general, a difficult nonparametric problem.
The maximum likelihood estimate (MLE), also referred to as the
plug-in estimate, takes the empirical distribution P̂ (x) (given by the
observed frequencies) and plugs it into the entropy formula so that

ĤMLE = −
X

x

P̂ (x) log P̂ (x).

This approach seems intuitively obvious and is consistent as n → ∞
for fixed, finite s [7]. However, for small samples, it can lead to
severely biased estimates [8, 9, 10]. This phenomenon, illustrated in
Figure 3, is pronounced in the large s, small n regime endemic in
spike train data. It is the dominating component of the mean squared
error of the MLE.

3.1. Bias correction

Several proposals have been made to improve on the MLE by re-
ducing its bias, while hopefully accumulating only a small increase
in variance. For fixed and finite s, the leading term in the large n
asymptotic bias of the MLE is −(s − 1)/(2n) [8]. This suggests
that the bias of the MLE can be corrected by adding −(ŝ−1)/(2n),
where ŝ is an estimate of the unknown s. However, the problem of
estimating s is potentially more difficult. Taking ŝ to be the observed
cardinality leads to the Miller-Maddow (MM) correction. Bias cor-
rection based on the jackknife technique (JK) was proposed by [11].
It is more computationally intensive than the MLE as it requires that
the MLE be recomputed n times.

The MLE belongs to a larger class of estimators that are linear

in the statistics fj := #{x : P̂ (x) = j/n}. (In other words, fj is
the number of words that appeared exactly j times in X1, . . . , Xn.)
[12] recognized this and proposed an estimator (BUB) based on nu-
merical optimization of an upper bound on the bias of estimators in
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Fig. 3. Comparison of entropy estimators on simulated data sets of
various sizes, drawn i.i.d. from a power-law distribution (p(k) k−1)
on 210 words. The lines are averages over 1000 realizations and the
bars indicate ± 1 standard deviation. The true entropy (≈ 7.5 bits)
is indicated by the horizontal line. The MLE has the worst bias and
consistently underestimates the entropy.

this class. Unfortunately, the upper bound depends the unknown s,
but it seems to be less sensitive to underestimating s than the Miller-
Maddow correction. Figure 3 shows the performance of BUB for 3
different choices of ŝ: observed cardinality (BUB-), twice the true
cardinality (BUB+), and the true cardinality (BUB.o).

[13], in collaboration with Turing, also considered the statistics
fj , but in the more general context of estimating P (x). They showed

that the sample coverage
P{P (x) : P̂ (x) > 0} could be estimated

by Ĉ = 1 − f1/n. The sample coverage is typically � 1 when
s > n. Thus, estimates that do not account for unseen words, like
the MLE, will have a large negative bias because low probability
words that are frequently not covered by the sample contribute to the
entropy of the distribution in a non-negligible way. [14] observed

this and used the Good-Turing formula to correct P̂ . They suggest

scaling P̂ by Ĉ and then plugging into the Horvitz-Thompson es-
timator for a population total to correct for missing summands in
the entropy formula. [15] studied this estimator in the context of
spike train data and called it the coverage adjusted entropy estimator
(CAE).

Bayesian methods for estimating the entropy have also been
proposed. One approach [16] is to apply the entropy formula to a
Bayesian estimate of P (x). One example is the Laplace estimate
that results from a Dirichlet prior. It accounts for missing words by
adding 1 to the observed frequency of each word. A more direct al-
beit analytically difficult approach is to place a prior on the entropy
itself (see, e.g., [17, 18]). [18] observed that the MLE corresponds
to an Bayesian estimate with a nearly singular prior on the entropy.
They proposed an estimator that attempts to induce an approximately
flat prior on entropy. The approach is computationally intensive and
depends on the unknown s.

The difficulty of entropy estimation when s is much larger than
n is prototyped by the s = ∞ case, where the convergence rate of
entropy estimates can be very slow [19]. Indeed, [20] showed that for
P with finite entropy variance V ar[log P (X1)] the minimax asymp-
totic rate of convergence is OP (1/ log n) and that, surprisingly, the
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Fig. 4. (a) The suffix tree of binary words of length 2 (K = 2, d =
2). The path enclosed by the dashes corresponds to the word 10. (b)
The context tree of a VLMC of order K = 2 on d = 2 letters. This
particular model projects all words that end with a 1 down to 1 state.

MLE attains this rate. Asymptotic minimax analysis is not enough,
as [15] showed that the CAE also attains this rate, but numerical sim-
ulations suggest that the finite sample performance of the CAE and
other estimators is much better than that of the MLE (see Figure 3).

3.2. Dependence and context tree methods

When overlapping time-windows are considered, Xt is of the form
Xt = (Zt−K+1, . . . , Zt). A simple generalization of the i.i.d. as-
sumption is to instead assume that (Xt) is a stationary Markov chain,
i.e. P (Xt = x) = P (x) and P (Xt = x|Xt−1, . . .) = P (Xt =
x|Xt−1) for all t. Equivalently, (Zt) is a stationary Markov chain
of order K. This approach imposes structure by recognizing that the
word Xt is the concatenation of letters (Zt−K+1, . . . , Zt). When
the number of possible letters d is finite, there is a natural repre-
sentation of the maximal state space of (Zt) as a d-ary suffix tree
of depth K, with paths from the top to the bottom of the tree cor-
responding to K letter words in time-reversed order. Figure 4 (a)
shows an example for K = 2, d = 2.

Similarly to the i.i.d. case, the entropy of P (x) can be estimated
by applying the entropy formula to an estimate of the stationary dis-
tribution of the Markov chain. This can be done by first estimating
the transition probabilities, and then computing the stationary dis-
tribution numerically. Still, this requires the estimation of an expo-
nential number of parameters and is prone to overfitting. This dif-
ficulty can be circumvented by assuming that the memory length
of the Markov chain is variable (VLMC, see [21]) so that many
branches of the full suffix tree can be projected down to a smaller
number of states, resulting in a context tree (see Figure 4 (b)). This
is the approach taken by methods (see, e.g., [22, 23]) based on the
context tree algorithm [24, 25]. The algorithm works by growing a
maximal tree and then pruning branches according to a model selec-
tion criterion. The estimation of transition probabilities can still be
problematic, and different proposals vary in their strategy. It may
be fruitful to explore the bias correction ideas from i.i.d. entropy
estimators with the context tree methods.

4. NON-STATIONARITY

A crucial assumption made in all of the entropy estimation meth-
ods described above is stationarity of the joint stimulus and response
process {St, Xt}. Many applications, however, use non-stationary
or even deterministic stimuli, so that entropy and mutual information
are no longer well defined. Consider the the natural song stimulus in
Figure 1 for example. The bursts of energy in the signal suggest that
its statistical properties are not stationary in time.
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Fig. 5. Coverage adjusted estimate (below, solid line) of D(Pt, P̄ )
from the response shown in Figure 1 with K = 10 and Δt = 1msec.
The shaded region indicates pointwise 95% confidence intervals ob-
tained by bootstrapping the trials 1000 times. The information esti-
mate, 0.77 bits (per 10msec word), corresponds to the average value
of the solid line. The stimulus is shown above for comparison.

Stationary methods may still be applied, but their results must be
interpreted carefully. [26] gave an alternative interpretation of the di-
rect method information estimate. The quantity that it estimates can
be written as the time-average of the Kullback-Leibler divergence
between the time t response distribution Pt and average response
distribution P̄ across the entire experiment [26]. To be precise, while
holding n fixed, as m → ∞, the direct method information estimate
converges to

1

n

nX
t=1

D(Pt||P̄ ) =
1

n

nX
t=1

"X
x

Pt(x) log
Pt(x)

P̄ (x)

#
(1)

with probability 1. This holds under mild assumptions, regardless of
stationarity. When there is stationarity and ergodicity, this quantity
coincides with mutual information as n → ∞.

In the non-stationary case the information estimate no longer es-
timates mutual information in the usual sense, but this interpretation
suggests that it instead measures magnitude of variation of the re-
sponse as the stimulus varies. This may still be a useful assessment
of the extent to which the stimulus affects the response as long as
other factors that affect the response are themselves time-invariant.
[26] proposed plotting D(Pt||P̄ ), rather than just reporting its aver-
age as in (1). See Figure 5 for an example. Other methods that ex-
plicitly consider the dynamic and non-stationary nature of the stim-
ulus and response should be used instead; see for instance [27].

5. CONCLUSION

The information estimates discussed in this paper sidestep the dif-
ficult problem of estimating the joint distribution of response and
stimulus by instead estimating the difference between the marginal
and conditional entropies of the response. Although the potentially
high-dimensional problem of estimating the stimulus distribution is
avoided, high-dimensionality reappears in considering the exponen-
tially many possible patterns of spiking in the response. This makes
entropy estimation challenging. Moreover, this approach tempts the
practitioner into ignoring the role of the stimulus and the meaning
of mutual information. This can lead to misinterpretation. Informa-
tion theoretic approaches can and should be used, but the methods
should explicitly consider the dynamic and non-stationary nature of
the stimulus.
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