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ABSTRACT

In this paper, we build upon previous Brain Machine Interface (BMI)
signal processing models that require a-priori knowledge about the
patient’s arm kinematics. Specifically, we propose an unsupervised
hierarchical clustering model that attempts to discover both the inter-
dependencies between neural channels and the self-organized clus-
ters represented in the spatial-temporal neural data. Given that BMIs
must work with disabled patients who lack arm kinematic informa-
tion, the clustering work describe within this paper is very relevant
for future BMIs.

Index Terms— Hidden Markov Model, Brain Machine Inter-
face, Hierarchical Clustering, Neural Spike Data, Neural Data Clus-
tering.

1. INTRODUCTION

Generally, a BMI is a system that directly retrieves neuronal firing
patterns from dozens to hundreds of neurons in the brain and then
translates this information into desired actions in the external world.
In particular, the neural data is recorded from one or more cortices
using a single electrode or multiple electrode grid arrays [11]. The
amplified analog voltages recorded from one or more neuron is then
digitally converted and passed to a spike sorting algorithm. Finally,
the discrete binned spike counts are fed into to a signal processing
algorithm [11] and subsequent trajectory/lever predictions are sent to
a robot arm or display device. All of the processing occurs as an an-
imal engages in a behavioral experiment (lever press, food grasping,
finger tracing, or joystick control).

With respect to the BMI signal processing, recent research has
demonstrated that neural state structures exist as animal subjects en-
gage in movement [3, 5, 17]. By finding partitions in the neural
input space that correspond to specific motor states (hand moving or
at rest), trajectory reconstruction is improved when the models are
constructed with data from only one partition. [5, 2, 17]. Specif-
ically, a ’switching’ generative model partitions the animal’s neu-
ral firings and corresponding arm movements into different motion
primitives [2, 4, 5]. This improvement is primarily due to the ability
of the generative models to homogenous the neural data so that the
continuous filters specialize in a particular part of the input space
rather than generalize over the full space. This work also demon-
strated that modeling is improved when dependencies are exploited
between neural channels [4, 5].

Unfortunately, moving to the clinical research setting compli-
cates the modeling paradigm since kinematic information is not
available from disabled patients. Without the kinematic clues to
label the different motion primitives in the final BMI setting, future
models must self-organize to exploit this neural input space.

In this paper, we propose an unsupervised hierarchical clustering
model that attempts to discover both the interdependencies between

Fig. 1. LM-HMM graphical model

neural channels and the self-organized clusters represented in the
spatial-temporal neural data. Section two provides the framework
for the proposed method. Section three details the experimental an-
imal data while section four provides the clustering results on the
animal data. Finally, section five offers a discussion on the model
and results.

2. CLUSTERING FRAMEWORK AND TRAINING

Although there is evidence for multiple neural structures that cor-
respond to motion primitives, we need a way to find them with an
automatic procedure or clustering method [2, 3]. Additionally, the
clustering model must encapsulate the spatial-temporal dependen-
cies since it has shown to be important [5] Therefore, we look to the
Linked-Mixture of Hidden Markov Models (LM-HMM) as a way to
help cluster the class labels while also clustering spatial dependen-
cies between channels.

The log likelihood of the dynamic neural firings from all of the
neurons for this structure (Figure 1) is
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Where the dependency between the tree cliques T j are repre-
sented by a hidden variable M in the second layer,

P (M i|M i−1, Θi) (2)

and the hidden state sequence S also has a dependency on the hidden
variable M in the second layer

P (Si
t |Si

t−1, M
i, Θi) (3)

From Figure 1, we see that the third layer of observable vari-
ables Oi are conditionally independent from the first layer of hidden
variables M i, as well as the sub-graphs of the other neural channels
T j (where i �= j). The hidden variable M in the second layer of
Equation 2 can be interpreted as a mixture variable (when exclud-
ing the hierarchic links).

The LM-HMM is a compromise between making an indepen-
dence assumption and assuming dependencies across all channels.
For further understanding and EM implementation please see [5].
Although this hierarchical model can find dependencies between
channels in an unsupervised way, we still need to address how to
obtain the class labels without user intervention.

The use of hidden Markov models for clustering sequences ap-
pears to have first been mentioned in Juang and Rabiner [12] and
subsequently used in the context of discovering subfamilies of pro-
tein sequences in Krogh et al [1]. Other work uses single HMM
chains for understanding the transition matrices [1, 13, 9]. Our work
differs since this model finds unsupervised hierarchal dependencies
between HMM chains (per neuron) while also clustering the data.
Essentially we are refining the model parameters and the structure
as we cluster.

Let data set D consist of N sequences for J neural channels,
D = S1

1 , ..., SJ
N , where Sj

n = (Oj
1, ...O

j
T ) is a sequences of observ-

ables length T and Λ = (λ1, ...λK) a set of Models. Our goal is to
locally maximize the log-likelihood function:
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Fig. 2. Likelihoods through time vs. iterations

In effect, we are trying to discover a natural grouping of the
sequences S into K clusters. This is similar to K-means except
the vector centroids are now probabilistic models representing dy-
namic temporal data [10]. Since we are clustering the sequences

from multiple channels, the underlying clusters or probabilistic mod-
els to which they belong must be inferred. This is difficult since the
LM-HMMs can have a varying number of states, the sequences can
vary in length and the choice of a distance metric for the models is
not straightforward.

Assumptions based on prior results are used to alleviate some
of these model initialization problems [2]. Specifically, we make a-
priori assumptions that the neural channels are of the same sequence
length and same number of hidden states. Below we outline the
clustering framework:

1. Randomly assign K LM-HMMs, one for each observation
sequence Sn, 1 ≤ n ≤ N . The LM-HMM parameters are initialized
randomly.

2. Train each assigned model with the respective sequences us-
ing the LM-HMM procedure discussed in [5]. During this step the
model learns the dependency structure for the current cluster of se-
quences.

3. For each model evaluate the log-likelihood of each of the N
sequences give model λi, i.e., calculate Lin =Log L(Sn|λi), 1 ≤
n ≤ N and 1 ≤ i ≤ K. y(Sn) =argmaxy Log L(Sn|λi) is
the cluster identity of the sequence. Then re-label all the sequences
based on cluster identity which in turn maximizes eq 4.

4. Repeat steps two and three until convergence occurs or until
a percentage of labeled data does not change (i.e. set a threshold
for changing samples). More advanced metrics for deciding when to
stop clustering could be used.

Although we start with noisy estimates of the model param-
eters by fitting the K models with sequences that may be from
different models, eventually the parameters should cluster into K
groups about their true values as the iterations progress. The Log-
likelihoods are a natural way to provide distances between models
rather than clustering in the parameter space (which is unknown).
Essentially, during each round, each training example is re-labeled
by the winning model with the final outcome retaining a set of labels
that relate to a particular cluster or neural state structure for which
spatial dependencies have also been learned.

3. EXPERIMENTAL ANIMAL DATA

In the clustering experiments we used two animal data sets. For the
first data set, thirty-two microwire electrodes were implanted uni-

Fig. 3. Rat Clustering Experiment, One lever, Two Classes
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Table 1. Classification Results of Lever Presses
Experiment Type Class 1 Class 2

Unsupervised 65.2 67.4%

Supervised 62.1 63.3%

laterally in the forelimb region of primary motor cortex of a male
Sprague-Dauley rat [14]. The task involved an LED visual stimu-
lus to press a single lever for a minimum of 0.5s to achieve a water
reward. Essentially this go-no-go experiment includes neural data
along with lever presses. This particular data set contains 16 neu-
rons yielding 13000x16 time bins. With each time being the spike
sorted count per 100ms of a particular neuron (sixteen in this data
set).

For the second rat data set, two 16-microelectrode arrays in the
forelimb regions of each hemisphere [6]. The task involved an LED
visual stimulus to press one of two levers for a minimum of 0.5s to
achieve a water reward. Essentially this go-no-go experiment also
provides neural data along with lever presses. This particular data
set contains 42 neurons yielding 19000x42 time bins (100ms each).

4. RESULTS

For the first experiment, 5000 data points of the single lever press
experiment were used for clustering. The initial cluster labels were
randomly selected for the two classes (lever press and non-lever-
press) across the full time series. We took into consideration two
important points. First, we ran multiple Monte Carlo simulations in
order to verify our results. Second, we empirically determined the
parameters that needed to be initialized. These include:

1. Observation Sequence length

2. Number of states

3. Number of clustering rounds

For the observation length, we varied it from 5 to 15 which cor-
respond to .5 seconds to 1.5 seconds. We varied the number of hid-
den states from 3 to 5. Finally, we varied the number of rounds from
4 to 10. After exhausting the number of possible combinations we
found a length of 10 for observation length along with 3 states and
6 rounds to be acceptable (since less than 5% of the labels changed
after small number of iterations). We set these parameters for all
neural channels.

Figure 2 shows the likelihoods computed on the single-lever
press at each time step during a particular clustering iteration (itera-
tions 1,2,3 and 6). Notice how initially the class likelihoods are very
similar but after the next round more discrimination between classes
is possible. Figure 3, demonstrates that the hierarchal clustering ap-
plied to these likelihoods gives a somewhat reasonable clustering for
the two classes in the single lever press. In terms of quantification,
Table 1 shows that the hierarchical clustering is able to correctly
classify each class around 66% of the time. Of course the models do
not know which classes the samples belong. We use the ground truth
of the lever presses to determine the accuracy of the clustering. It is
remarkable that the results are similar to the supervised classification
(and slightly better for this particular data-set). For the supervised
classification we use Adaline/RNN/HMM results for this data set
(with similar results obtained between the different classifiers). We
see that the clustering fails in certain locations. We believe this is due
to the clinical experiment since the rat moves around the cage with-
out being recorded. This will be addressed further in the discussion
section.

Fig. 4. Rat Clustering Experiment, Two levers, Two Classes

For the second experiment, 10000 data points of the two-lever
rat experiment were used for clustering. All of the data points were
randomly labeled for the two classes. Parameters were also empiri-
cally selected. For the following double-lever experiments there are
cue-times included and rewards. Figure 4 shows where the cue sig-
nals are and the rewards as well as the lever presses (red is left, green
is right). For example on the fifth cue-signal the rat was supposed
to press left but instead pressed right (as indicated by colors on the
plot).

From figure 4, we see that there are repeating patterns between
classes. Unfortunately, they are not comparable to the experiment
with a single lever press.

Figure 5 shows the results when clustering the data for the two-
lever press into three classes. It is interesting that we see that there
are some repeating patterns. The consistencies seem to be that the
clusters transition from class to another (like red to green or green
to blue) and appears to correspond to a kinematic/experimental
event(i.e. lever pressed, cue signal, reward, etc).

As the number of clusters is increased, similar results are ob-
tained. Specifically, there are repeating patterns when looking at
the transitions from one class to another before and after the lever
presses. Across all of the double-lever press experiments quantifica-
tion (in terms of classification) is poor. The next section provides a
possible reason for this poor performance.

5. DISCUSSION

Despite these encouraging results, we believe that substantial im-
provements in the hierarchical clustering are possible. First, we
are missing most of the kinematic information from the experiment.
Sometimes the rat grooms during the experiments or walks away
from the lever or moves towards the water reward. Even how the
animal presses the lever is inconsistent since it uses different paws
and presses different locations on the levers (without this informa-
tion being recorded). This also helps to explain why the supervised
classification had such poor results (since labels aren’t true ground
truths).

Second, the LM-HMM in the hierarchal clustering framework
may not be taking full advantage of the dynamic spatial relationships
that may be evolving through time between the neurons. Although
the hierarchal training methodology does create dependencies be-
tween the HMM experts, perhaps there are better ways to exploit the
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dependencies or aggregate the local information. This is most cer-
tainly true when considering that different neural processes that are
interacting with other neural processes in an asynchronous fashion.

One way to see if the clustering results are providing any mean-
ingful information is to see how the final reconstruction of a kine-
matic trajectory is improved. Obviously that will have to be done
with other data where full kinematic information about the clinical
experiment is provided.

As a final point, there was an interesting effect from the rat ex-
periments. Looking closely at some of the results, repeating patterns
of transitions from one class to another exists. For example there
may be a consistent transition from class 1 to class 3 and class 2 to
class 1. It would be interesting to investigate this further and see if
perhaps there is a switching behavior between stationary points in
the input space. Perhaps we can ascertain when a stationary switch-
ing point has occurred and exploit that information for multiple mod-
eling.

Fig. 5. Rat Clustering Experiment, Two levers, Three Classes

6. ACKNOWLEDGEMENTS

We thank Justin Sanchez and Jack DiGiovanna for sharing their rat
data and experience. This paper was supported by DARPA project
#N66001-02-C-8022 and NSF project #0540304.

7. REFERENCES

[1] I. Cadez and P. Smyth, “Probabilistic Clustering using Hier-
archical Models,” Technical Report No. 99-16 Department of
Information and Computer Science University of California,
Irvine

[2] S. Darmanjian, S. P. Kim, M. C. Nechyba, S. Morrison, J.
Principe, J. Wessberg, and M. A. L. Nicolelis, “Bimodel Brain-
Machine Interface for Motor Control of Robotic Prosthetic,”
IEEE Int. Conf. on Intelligent Robots and Systems, pp. 112-116,
2003.

[3] S. Darmanjian, S. P. Kim, M. C. Nechyba, J. Principe, J. Wess-
berg, and M. A. L. Nicolelis, “Bimodel Brain-Machine Interface
for Motor Control of Robotic Prosthetic,” IEEE Machine Learn-
ing For Signal Processing, pp. 379-384, 2006.

[4] S. Darmanjian, A. R. C. Paiva, J. C. Principe, M. C. Nechyba,
J. Wessberg, M. A. L. Nicolelis, and J. C. Sanchez, “Hierarchal

decomposition of neural data using boosted mixtures of inde-
pendently coupled hidden markov chains,” International Joint
Conference on Neural Networks, pp. 89-93, 2007.

[5] S. Darmanjian and J. Principe, “Boosted and Linked Mixtures
of HMMs for Brain-Machine Interfaces,” EURASIP Journal on
Advances in Signal Processing, vol. 2008, Article ID 216453,
12 pages doi:10.1155/2008/216453

[6] J. DiGiovanna, J. C. Sanchez, and J. C. Principe, ”Improved
Linear BMI Systems via Population Averaging,” presented at
IEEE International Conference of the Engineering in Medicine
and Biology Society, New York, pp. 1608-1611, 2006.

[7] Donoghue, J. P. and S. P. Wise (1982). ”The motor cortex of the
rat: cytoarchitecture and microstimulation mapping.” J. Comp.
Neurol. 212(12):

[8] Luis Goncalves, Enrico Di Bernardo and Pietro Perona,
Movemes for Modeling Biological Motion Perception Book Se-
ries Theory and Decision Library Volume Volume 38 Book See-
ing, Thinking and Knowing Publisher Springer Netherlands

[9] Kemere C, Santhanam G, Yu BM, Afshar A, Ryu SI, Meng TH,
Shenoy KV (2008) Detecting neural state transitions using hid-
den Markov models for motor cortical prostheses. Journal of
Neurophysiology. 100:2441-2452

[10] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
analysis and an algorithm. In T. G. Dietterich, S. Becker, and Z.
Ghahramani, editors, Advances in Neural Information Process-
ing Systems 14, pages 849856. MIT Press, 2002.

[11] M. A. L. Nicolelis, D.F. Dimitrov, J.M. Carmena, R.E. Crist,
G Lehew, J. D. Kralik, and S.P. Wise, “Chronic, multisite, mul-
tielectrode recordings in macaque monkeys,” PNAS, Vol. 100,
No. 19, pp. 11041 - 11046, 2003.

[12] B.H Juang, and L. R. Rabiner, “Issues in using Hidden Markov
models for speech recognition,” Advances in speech signal pro-
cessing, edited by S. Furui and M.M. Sondhi, Marcel Dekker,
inc., pp. 509-553, 1992

[13] Radons G, Becker JD, Dulfer B, Kruger J. Analysis, classi-
fication, and coding of multielectrode spike trains with hidden
Markov models. Biol Cybern 71: 359-373, 1994.

[14] J. C. Sanchez, J. C. Principe, and P. R. Carney, ”Is Neuron
Discrimination Preprocessing Necessary for Linear and Nonlin-
ear Brain Machine Interface Models?,” accepted to 11th Interna-
tional Conference on Human-Computer Interaction, vol. 5, pp.
1-5, 2005.

[15] A. B. Schwartz, D. M. Taylor, and S. I. H. Tillery, “Extrac-
tion algorithms for cortical control of arm prosthetics,” Current
Opinion in Neurobiology, Vol. 11, pp. 701-708, 2001.

[16] E. Todorov, On the role of primary motor cortex in arm move-
ment control, To appear in Progress in Motor Control III , chap
6, pp 125-166, 2003.

ournal of Neurophysiology. 100:2441-2452

[17] B.M. Yu, C. Kemere, G. Santhanam, A. Afshar, S.I. Ryu, T.H.
Meng, M. Sahani M*, K.V. Shenoy, (2007) Mixture of trajectory
models for neural decoding of goal-directed movements. Journal
of Neurophysiology. 97:3763-3780.

3508


