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ABSTRACT
A state-space method for simultaneously estimating time-
dependent rate and higher-order correlation underlying par-
allel spike sequences is proposed. Discretized parallel spike
sequences are modeled by a conditionally independent mul-
tivariate Bernoulli process using a log-linear link function,
which contains a state of higher-order interaction factors. A
nonlinear recursive filtering formula is derived from a log-
quadratic approximation to the posterior distribution of the
state. Together with a fixed-interval smoothing algorithm,
time-dependent log-linear parameters are estimated. The
smoothed estimates are optimized via EM-algorithm such
that their prior covariance matrix maximizes the expected
complete data log-likelihood. In addition, we perform model
selection on the hierarchical log-linear state-space models
to avoid over-fitting. Application of the method to simul-
taneously recorded neuronal spike sequences is expected to
contribute to uncover dynamic cooperative activities of neu-
rons in relation to behavior.

Index Terms— State space methods, Point processes,
Generalized linear model, Correlation, Information geometry

1. INTRODUCTION

Classical studies in neurophysiology are based on the idea
that stimulus information is encoded in the firing rates of sin-
gle neurons. Alternatively, precise spike coordination is dis-
cussed as an indication of coordinated network activity in
form of a cell assembly [1] relevant for information process-
ing. Activation of a cell assembly predicts higher-order cor-
relation (HOC) between the spiking activities of its member
neurons [2]. Supportive evidence for this concept was pro-
vided by existence of excess synchrony among neuronal spik-
ing activities occurring dynamically in relation to behavioral
context [3, 4, 5]. However, available approaches for corre-
lation analysis do not allow for identifying time-dependent
HOCs to trace active assemblies.
To characterize higher-order interaction, the log-linear

model is an useful tool because it provides a well-defined
measure of correlation based on information geometry [6].

Although its natural (canonical) parameters are not orthog-
onal, HOCs can be extracted in a quasi-orthogonal manner
from a mixture of dually affine Riemannian coordinates [7, 8].
Former studies performed a regression analysis on parallel
spike trains using either a log-linear model [7, 8, 9], or the
log-linear model considering up to pairwise interaction only
(maximum entropy model) [10] to characterize neuronal data.
The existing approaches, however, assume stationarity, a con-
dition that is typically not fulfilled in neuronal spike data
from awake behaving animals.
The state-space method [11] was suggested as a frame-

work to model a time-dependent system by representing its
parameters (states) as a Markov process. It allows to esti-
mate a filtered/smoothed posterior distribution of the time-
dependent state conditional on observed data. The approx-
imation method for non-Gaussian point process observation
in a recursive filtering algorithm was successfully applied to
neuronal spike data [12, 13, 14]. Existing state-space models
incorporated ensembles of spike histories into the univariate
spike response model [14, 15], however, without considering
correlations between the spike sequences.
In this contribution, we provide a method for estimating

the dynamics of HOCs by combining the log-linear model
with a state-space analysis. For that estimation, we combined
a fixed-interval smoother [11] with a nonlinear recursive fil-
tering algorithm which we derived from a log-quadratic ap-
proximation of the posterior distribution. To obtain the most
predictive model, we compared goodness-of-fit of hierarchi-
cal log-linear state-space models with different order of inter-
actions by using the Akaike’s Bayesian information criterion
(ABIC) [16]. While inclusion of increasingly higher-order in-
teraction terms improves the model accuracy, the estimation
of higher-order parameters may suffer large variance due to
the paucity of synchronous spikes in the data. This trade-off is
optimally resolved with the model that minimizes the ABIC.
The model complexity is thus selected based on the sample
size as well as the prominence of higher-order structure.
An earlier version of this paper was presented in abstract

form [Shimazaki, Brown, Grün, Statistical Analysis of Neu-
ronal Data 4, Pittsburgh, May 2008].
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2. METHODS

2.1. Log-linear model of higher-order interactions

We model N simultaneous spike sequences as a multivari-
ate Bernoulli process. The processes, repeated over n tri-
als, are discretized into T bins of bin size Δ. Let Xt,l =
(Xt,l

1 , Xt,l
2 , . . . , Xt,l

N ) be N -tuple binary variables at t-th bin
of l-th trial, where 1 denotes a bin filled with one or more
spikes, and 0 denotes no spike. Let x = (x1, x2, . . . , xN )
represent 2N spike patterns, and Ωk be a k-subset of N el-
ements: Ω1 = {1, 2, . . . , N} , Ω2 = {12, 13, . . .}, Ω3 =
{123, 124, . . .}, etc. We define the interaction terms across
the variables as Fi (x) = xi, Fij (x) = xixj , Fijk (x) =
xixjxk (1 ≤ i < j < k ≤ N), etc. The log-linear model up
to the r-th order interaction (r ≤ N ) is defined as [6]

log p
(r)
t (x) = −ψt +

∑
i∈{Ω1,...,Ωr}

θt
iFi (x) (1)

with ψt being a normalization parameter. θt
i is a natural pa-

rameter referring to an interaction among variables indicated
in the index i. Let θt = [θt

1, . . . , θ
t
12, . . . , θ

t
1···r, . . .]

′ be a
d =

∑r
k=1

(
N
k

)
dimensional vector. Our goal is to obtain the

estimate of θt from the observed parallel spike sequences.
The log-linear model belongs to the exponential family

which defines a dually flat space [6]. Its e-affine coordinate is
given as the natural parameter θt, its m-affine coordinates as
the expectation parameter ηt = [ηt

1, . . . , η
t
12, . . . , η

t
1···r, . . .]

′,
where

ηt
i = E [Fi (x) |θt] (2)

for i ∈ {Ω1, . . . ,Ωr}. An efficient estimator of ηt
i is the syn-

chrony rate defined for the t-th bin as

yt
i =

1
n

n∑
l=1

Fi

(
Xt,l

)
(3)

for i ∈ {Ω1, . . . ,Ωr}. Synchrony rates up to the r-th order,
yt = [yt

1, . . . , y
t
12, . . . , y

t
1···r, . . .]

′, constitute sufficient statis-
tic of the log-linear model up to the r-th order interaction.

2.2. State-space analysis on the log-linear model

Assuming conditionally independent observations, the likeli-
hood of observed spike sequences is given as

p (y1:T |θ1:T ) =
T∏

t=1

exp [n (y′
tθt − ψt)] , (4)

with y1:T = {y1,y2, . . . ,yT } and θ1:T = {θ1, θ2, . . . ,θT }.
Our prior assumption is the following state equation

θt = Fθt−1 + ξt, (5)

for t = 2, . . . , T . A random vector ξt (d× 1 matrix) is drawn
from a zero-mean multivariate normal distribution with a co-
variance matrixQ (d × d matrix). A matrix F (d × d matrix)

is the first order autoregressive parameters. The initial value
obeys θ1 ∼ N (μ,Σ); μ (d×1matrix) andΣ (d×dmatrix).
We denote the set of hyper-parametersw = [F,Q, μ,Σ].
The joint probability distribution is obtained by combin-

ing the observation equation (Eq. 4) and the state equation
(Eq. 5). The optimization principle for w is chosen as the
maximization of the marginal log-likelihood,

l (w) = log
∫

p (y1:T , θ1:T |w) dθ1:T . (6)

We make use of the expectation-maximization (EM) al-
gorithm known to efficiently combining the estimation of the
posterior density and the optimization of the hyper-parameter.
Instead of Eq. 6, the method maximizes its lower bound,

Q (w|w∗) = E [log p (y1:T , θ1:T |w) |y1:T ,w∗]

= n
T∑

t=1

(y′
tEθt − Eψt)

−d log
√
2π − log

√
detΣ

−1
2
E (θ1 − μ)′ Σ−1 (θ1 − μ)

− (T − 1) d log
√
2π − (T − 1) log

√
detQ

−1
2

T∑
t=2

E (θt − Fθt−1)
′ Q−1 (θt − Fθt−1) , (7)

by alternating expectation (E) and maximization (M) steps. In
the E-step, we obtain the expected values with respect to θt

in Eq. 7 using w∗. In the M-step, the hyper-parameterw that
maximizes Eq. 7 is obtained. The obtainedw is then used for
w∗ in the next E-step. The details of each step are given as
follows.
E-step Mean and covariance of the one-step prediction

density p (θt|y1:t−1) for the Gaussian state transition is given
as [11, 12, 13]

θt|t−1 = Fθt−1|t−1, (8)
Wt|t−1 = FW′

t−1|t−1F
′ +Q. (9)

Here θt|s and Wt|s are the conditional mean E [θt|y1:s] and
covariance E[(θt − θt|s)(θt − θ′

t|s)|y1:s]. The filter distribu-
tion is given by the Bayes’ theorem as

p (θt|y1:t) = p (yt|θt,y1:t−1) p (θt|y1:t−1)
p (yt|y1:t−1)

∝ exp[n (y′
tθt − ψt)

−1
2

(
θt − θt|t−1

)′
W−1

t|t−1
(
θt − θt|t−1

)
]. (10)

Here we make a Gaussian approximation to the poste-
rior by Laplace’s method: the posterior mean, θt|t, is ob-
tained from ∂

∂θt
log p (θt|y1:t) = 0; the covariance is given

as −[ ∂2

∂θt∂θ′
t
log p (θt|y1:t) |θt=θt|t ]

−1. Note that the first
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Fig. 1. (A) Simulated parallel spike sequences, Xt,l. According to a time-dependent formulation of the log-linear model (see
dashed lines in B for the model parameters), N = 3 parallel spike sequences were simulated repeatedly for n = 100 trials
(duration: T = 500 bins of width Δ = 1[ms]). Each of the 3 panels show the spike events for the 3 variables Xt,l

1 , Xt,l
2 , Xt,l

3

(t = 1, . . . , T and l = 1, . . . , n). Synchronous spikes across all 3 simultaneous sequences (detection in bins of 1ms width) are
marked with circles. Horizontal lines indicate trial numbers l = 5, 20, 50, 100. (B) Smoothed estimates of the log-linear param-
eters, θt|T . The different panels show the smoothed estimates (solid lines) of the log-linear parameters θt

i of different orders
(i ∈ {Ω1,Ω2,Ω3}) derived from the data shown in A. The gray band indicates the 99% credible interval of the marginalized
posterior density of the state (see text). The dashed lines show the true time-dependent parameters used for the generation of
the spike sequences.

derivative of the moment generating function provides the ex-
pectation parameter ∂ψt

∂θt
= ηt. The second derivative is the

Fisher metric ∂2ψt

∂θt∂θ′
t
= Gt. Here (Gt)ij = ηt

ωi∪ωj
−ηt

ωi
ηt

ωj
,

where ωi is an index of the ith element of ηt. Hence we ob-
tain the equations for the filtered mean and covariance as

θt|t = θt|t−1 + nWt|t−1(yt − ηt|t), (11)

W−1
t|t = W−1

t|t−1 + nGt. (12)

Eq. 11 is solved by the Newton-Raphson method. Together
with the one-step prediction formulae Eqs. 8 and 9, we eval-
uate the nonlinear recursion formulae Eqs. 11 and 12 for t =
2, . . . , T , by using the initial values θ1|0 = μ andW1|0 = Σ.
Starting from θT |T and WT |T obtained by the filtering

algorithm, the following fixed-interval smoothing algorithm
[11, 12, 13] provides the smoothed mean and covariance. For
t = T − 1, T − 2, . . . 2, we compute

θt|T = θt|t +At

(
θt+1|T − θt+1|t

)
, (13)

Wt|T = Wt|t +At

(
Wt+1|T − Wt+1|t

)
A′

t. (14)

with
At = Wt|tF′W−1

t+1|t. (15)

The lag-one covariance smootherWt−1,t|T is obtained by the

method of De Jong and Mackinnon [17]:

Wt−1,t|T = E[ (θt−1 − θt−1|T )(θt − θt|T )′
∣∣ y1:T ]

= At−1Wt|T . (16)

M-step Given θt|T ,Wt|T ,Wt−1,t|T , the update of w is
given by the following equations. The covariance matrix Q
and the auto-regressive parameter F are updated according to

Q =
1

T − 1
T∑

t=2

[Wt|T − Wt−1,t|T F′

− FW′
t−1,t|T + FWt−1|T F′]

+
1

T − 1
T∑

t=2

(
θt|T − Fθt−1|T

) (
θt|T − Fθt−1|T

)′ (17)
and

F =

[
T∑

t=2

(
Wt−1,t|T + θt|T θ′

t−1|T
)]

·
[

T∑
t=2

(
Wt−1|T + θt−1|T θ′

t−1|T
)]−1

. (18)

The mean of the initial distribution is updated with μ = θ1|T .
The covariance matrix Σ is not updated. Instead, we use a
nominal diagonal matrix asΣ.
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Table 1. The ABIC of the r-th order log-linear model applied
to data of different number of trials n (data shown in Fig.1-A).
The asterisk indicates the model that minimizes the ABIC.

r = 1 r = 2 r = 3
n = 5 2085∗ 2097 2144
n = 20 7913 7698∗ 7728
n = 50 19263 18542 18540∗
n = 100 38478 36811 36781∗
n = 200 76683 73330 73238∗

2.3. Model Selection

Let us define a log-linear state-space model with up to the
r-th order interaction by Er. Since Er is a submanifold of
Er+1, the log-linear models naturally form hierarchical struc-
ture, E1 ⊂ E2 ⊂ · · · ⊂ EN . Comparison of the hierarchical
models is performed by computing the ABIC [16]:

ABIC = −2l (w) + 2 dimw. (19)

The marginal log-likelihood is computed by using the one-
step prediction formula for the mean Eq. 8 as l(w) =∑T

t=1 log p(yt|y1:t−1,w) ≈ n
∑T

t=1(y
′
tθt|t−1 − ψt|t−1).

3. RESULTS

We applied the method to N = 3 parallel spike sequences
with n = 100 repetitions (Fig.1-A), generated by a time-
dependent log-linear model (Fig.1-B, dashed lines). Figure
1-B (solid lines) shows the estimates of the log-linear pa-
rameters from the data in Figure 1-A. The gray band is the
99% credible interval of the marginalized posterior distribu-
tion p (θt

i |y1:T ) for i ∈ {Ω1,Ω2,Ω3}. Note that parameter
θt
123 indicates triplewise correlation, i.e. excess synchrony
compared to expectation given pairwise correlations.
While the full model (E3) is an unbiased model for the

triple binary sequences, the fitted parameter for the triplewise
correlation θt

123 may suffer large variance (over-fitting) due
to the paucity of triplet synchrony. Thus a submodel with
r < 3 can be close to the generative model in terms of the
Kullback-Leibler risk. To validate that the inclusion of the
triplewise correlation improves the goodness-of-fit, we com-
puted the ABICs for the hierarchical models (r = 1, 2, 3) as
shown in Table 1. To test the influence of the sample size
of the data upon the model selection, we varied the number
of trials n used to fit the hierarchical log-linear models. For
small number of trials (n = 5), the model without correla-
tion structure was selected. With increasing trial numbers,
models with increasing correlation orders were selected. For
n = 50, 100, and 200, the full model predicts best.

4. CONLUSION

We developed a method for identifying the time-varying
higher-order correlation structure in parallel spike sequences.
Its application to simultaneous recordings of neuronal activity
is expected to provide us with new insights into the dynam-
ics of assembly activities, their composition and behavioral
relevance.
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