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ABSTRACT
 

A fundamental goal in systems neuroscience is to infer the 
functional connectivity among neuronal elements coordinating 
information processing in the brain. In this work, we investigate 
the applicability of Dynamic Bayesian Networks (DBN) in 
inferring the structure of cortical networks from the observed spike 
trains. DBNs have unique features that make them capable of 
detecting causal relationships between spike trains such as 
modeling time-dependent relationships, detecting non-linear 
interactions and inferring connectivity between neurons from the 
observed ensemble activity. A probabilistic point process model 
was used to assess the performance under systematic variations of 
the model parameters. Results demonstrate the utility of DBN in 
inferring functional connectivity in cortical network models.  
 

Index Terms—Functional connectivity, dynamic Bayesian 
network, spike trains
 

1. INTRODUCTION 
 
An essential step towards understanding how the brain orchestrates 
information processing is to simultaneously observe the spiking 
activity of cortical neurons that mediate perception, learning, 
sensory and motor processing. Implantable high-density 
microelectrode arrays have enabled scrutinizing this activity at an 
unprecedented scale, and greatly accelerated our ability to monitor 
functional alterations of neural networks in awake, behaving 
animals  [1] [2]. Therefore, the need to develop machine learning 
and data mining techniques has emerged to enable analyzing the 
enormous amount of electrophysiological data being collected.  

Dynamic Bayesian Network (DBN) is a graphical 
representation recently introduced to model dynamic systems in 
which temporal dependency governs the relationship between 
system elements  [3]. This makes it capable of inferring functional 
connectivity between neurons given the temporal dependency 
between the interacting neurons that might arise as a result of 
synaptic delays.  

Existing techniques for identifying neuronal connectivity such 
as cross-correlograms, partial correlation and partial spectral 
coherence  [4] mainly rely on pairwise relationships. While these 
techniques may be feasible to implement for a small number of 
neurons, they become computationally prohibitive for large 
number of cells and inadequate to assess casual relationships in 
neuronal networks with polysynaptic connectivity. DBN, on the 
other hand, does not rely on pair-wise relationships. They rather 
take into account the activity of the entire population when 

searching for relationships between the examined variables. This 
enables DBN to identify only direct relationships which is of great 
importance when dealing with complex neuronal networks. In 
addition, DBN has a unique ability to detect non-linear 
relationships which suits neuronal interactions that are known to 
be non-linear, such as those in hippocampus formations.  

In this paper, we investigate the applicability of applying 
DBN to reconstruct functional cortical networks from 
simultaneously observed spike trains. A probabilistic model is used 
to simulate neuronal firing patterns in which the firing probability 
of a given neuron depends on the history of the ensemble. We 
assess DBN success by examining networks of various 
characteristics with known connectivity. 

 
2. THEORY 

 
2.1. Bayesian Networks 
 
A Bayesian Network (BN) is a graphical representation of 
probabilistic models widely used for statistical inference and 
machine learning  [5]. A Bayesian Network is denoted as 

PGB , , where G is a directed acyclic graph (DAG) and P is a 

set of conditional probabilities. Each graph G consists of a set of 
nodes V and edges E, and is usually written as EVG , . Each 

node in V, denoted by vi, corresponds to a random variable xi (a 
neuron). Each directed edge in E, denoted by vi  vj, indicates that 
node vi is a parent (pre-synaptic neuron) of node vj. We denote by 
x (i) the set of random variables that are parents of xi. The 
statistical dependence between xi and its parent nodes x (i) is 
captured by the conditional probabilities Pr(xi|x (i)). Thus, the joint 
probability distribution of the random variables xi can be expressed 
given the conditional dependence on the parents by 
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A Dynamic Bayesian Network (DBN) is an extension of BN 
to handle time-series or sequential data  [3]. In a DBN, the status of 
a node (variable) at time t0 is conditionally dependent on its 
parents’ status in the history. Specifically, given a random variable 
xi at time T = t + 1, denoted by xi

(t+1), and its parents x (i), the value 
of xi

(t+1) is decided by the values of its parents x (i) observed during 
the interval T = 1 to T = t, denoted by t

ix :1 . Similar to Bayesian 

network, the statistical dependence between xi
(t+1) and t

ix :1  is 

captured by conditional probabilities Pr( 1t
ix | t

ix :1 ), and the joint 

probability Pr(x1
(t+1), . . . , xN

(t+1)) is computed as 
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In many cases, it is often assumed that xi
(t+1) is only 

dependent on the value of its parents observed at time T = t, which 
simplifies the conditional probabilities to t

i
t

i xx 1Pr . This is 

called the Markov assumption with Markov lag equal to 1 which 
can be extended to include multiple Markov lags. For instance, a 
DBN with maximum Markov lag of 3 implies that xi

(t+1) is decided 
by the value of its parents observed at time T = t, t  1, t  2. 
 
2.2. Learning Bayesian Network Structure 
 
Learning a Bayesian network from data involves two tasks: 
learning the structure of the network and learning the parameters 
of the conditional probability distributions. Structure learning of 
Bayesian networks is much more difficult compared to parameter 
learning because once the structure is known; it is easy to learn the 
parameters of the conditional probability distributions using 
existing algorithms like Maximum Likelihood Estimation (MLE). 

Score-based approaches are typically used to learn Bayesian 
networks structure  [5] in which a criterion is first defined by which 
a given Bayesian network structure can be evaluated on a given 
dataset, then a search is carried out through the space of all 
possible structures to find the graph with the highest score. Score-
based approaches are typically based on well established statistical 
principles such as Minimum Description Length (MDL)  [6] or 
Bayesian score like BDe score  [5] and Bayesian Information 
Criterion (BIC)  [7].  
 

3. PROBABILISTIC SPIKING MODEL 

In this model, the spike train Si of neuron i is modeled using an 
inhomogeneous Poisson point process with a conditional mean 
intensity function i(t|Hi(t)), where Hi(t) denotes the firing history 
of all the processes that affect the firing probability of neuron i up 
to time t. In this paper, we focus on two main components 
contributing to i(t|Hi(t)): a) the neuron’s background level of 
activity and b) the spiking history of both the neuron itself and that 
of other neurons connected to it. Thus, the firing probability of 
neuron i at time t can be modeled as [8] 
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where  is the bin width, i is the log of the background rate of 
neuron i, N is the total number of neurons in the population, Mij is 
the number of history bins that relate the firing probability of 
neuron i to activity from neuron j, ij models the connection 
between neuron i and neuron j (which may be excitatory or 
inhibitory), lij is the synaptic latency in bins associated with the 
connection between neurons i and j, and Sj(t  (m+lij) ) is the 
number of spikes fired by neuron j in bin m+lij (which is either 0 or 
1). The spiking history interval of the interaction between neurons 
i and j is thus Mij x . 

In order to mimic the influence of excitatory post-synaptic 
potential (EPSP) and inhibitory post-synaptic potential (IPSP) on 
the post-synaptic neuron firing, we utilized the following decaying 
exponential functions to model synaptic coupling 
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where t is the time in seconds, +/- indicate excitatory/inhibitory  
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Fig. 1. Performance vs. (a) Number of pre-synaptic connections 
per neuron, (b) Ratio of inhibitory and excitatory synaptic strength. 

 
connections, and Aij  models the strength of the connection.

4. RESULTS 
 
We tested the algorithm on networks simulated using the point 
process model given in (3). For each parameter setting in the 
results that will follow in this section, we generated 100 networks 
of different structures each containing 10 randomly connected 
neurons, where the indices of pre-synaptic neurons were drawn 
from a uniform distribution. In addition to the random connections, 
each neuron had a self-inhibitory connection. The duration of the 
generated spike trains was set to 1 minute with a bin width of 3ms. 

In our experiments, we used the Bayesian Network Inference 
with Java Objects (BANJO) toolbox  [9]. We utilized the simulated 
annealing search algorithm with 1 minute of maximum search time 
in all the analyses. We used the F-measure typically used for 
quantifying information retrieval to quantify the inference 
accuracy. This measure is the harmonic mean of two quantities: 
the recall R and the precision P, defined by  [10] 
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where C is the number of correctly inferred connections, M is the 
number of missed connections and W is the number of erroneously 
inferred connections. Thus, F will equal 0 if and only if none of 
the true connections are inferred and will equal 1 if and only if all 
of the true connections are inferred.  
 
4.1. Networks with Fixed Synaptic Latency 
 
We investigated the performance of DBN in inferring connectivity 
by varying the parameters of the model in (3) while keeping the 
synaptic latency lij for all neurons fixed at 1 bin (3ms). We initially 
examined networks of excitatory connections as the number of 
pre-synaptic neurons connected to each neuron was varied between 
1 and 6 while fixing all other parameters. The history interval was 
set to 180 ms. We decreased the weights Aij in (4) as the number of 
pre-synaptic connections increased in order to keep the mean firing 
rate around 25 spikes/sec while the background rate was set to 10 
spikes/sec.  

Fig. 1a demonstrates that the mean accuracy is greater than 
85% even when all the neurons in the population have 6 pre- 
synaptic connections per neurons. This represents a high degree of 
connectivity given that the maximum number of connections per 
neuron in a network of 10 neurons is 9.  

Fig. 1b illustrates the performance in the presence of 
inhibitory connections as their weights were varied relative to the  
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Fig. 2. Performance vs. Markov lag for variable history intervals. 

 
excitatory connections. The number of pre-synaptic connections 
per neuron was set to 2, with one excitatory and one inhibitory. All 
other parameters were set as previously described. For an 
Inhibitory/Excitatory (I/E) ratio below 1, a low inference accuracy 
was observed. The drop in the performance was caused by the 
DBN failure to infer weak inhibitory connections. This can be 
attributed to the fact that at low background rates, a neuron tends 
to be silent most of the time. Thus, a weak inhibitory input will not 
change its firing characteristics significantly. As the I/E ratio 
increases above 1, the accuracy gets closer to unity and does not 
deteriorate even when the inhibitory connections are 4 times 
stronger than the excitatory connections indicating that strong 
inhibitory connections do not affect DBN ability to detect weaker 
excitatory connections.  

We further investigated the performance when there is a 
mismatch between the DBN Markov lag and the synaptic latency 
as shown in Fig. 2. Each neuron had two pre-synaptic connections, 
one excitatory and one inhibitory of the same strength. The 
synaptic latency was fixed for all neurons at 4 bins (12 ms). As can 
be seen, when the Markov lag is set to a value smaller than the true 
synaptic latency, almost none of the connections was inferred. This 
is expected since when the synaptic latency is set to lij, the firing of 
any post-synaptic neuron at time bin t is only affected by the firing 
of the pre-synaptic neurons in the range [t M, t lij], where M is the 
number of history interval bins.  

When the Markov lag matched the synaptic latency, DBN 
attained accuracy close to unity. The inference accuracy 
deteriorated slightly when the Markov lag was set larger than the 
synaptic latency, particularly at relatively large M. This can be 
explained given the EPSP and IPSP characteristics used in our 
model. For a small M, the influence of a pre-synaptic spike on the 
post-synaptic neuron firing decays rapidly. Thus, DBN was not 
able to identify connectivity at Markov lags much larger than the 
synaptic latency. On the other hand, for large M, the effect of a 
pre-synaptic spike on the post- synaptic neuron firing lasts 
relatively longer, thereby enabling the DBN to infer those 
connections despite that the Markov lag is larger than the synaptic 
latency.  

 
4.2. Networks with Variable Synaptic Latencies 
 
In reality a cortical network may not always have a fixed synaptic 
latency. Delays in chemical synapses can reach a few milliseconds 
in addition to the limited sample size that precludes the ability to 
record all directly connected neurons in a given population. We 
investigated the performance when multiple synaptic latencies 
exist. Fig. 3 demonstrates the accuracy for cortical networks 
having different synaptic latencies. We first define the 
heterogeneity index as the number of different synaptic latencies in 
the population. A heterogeneity index of 1 on the x-axis implies  
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Fig. 3. Performance vs. the heterogeneity index using a range of 
Markov lags for analysis (Blue) and a combination of the networks 
inferred at distinct Markov lags (Red).  
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Fig. 4. Performance vs. no. of neurons in the examined population.
 
that all neurons had the same synaptic latency while 5 implies that 
every two neurons out of the 10 had distinct synaptic latency.   
Each neuron received 1 excitatory and 1 inhibitory connection of 
180 ms history interval.  [1] 

In order to capture connections at different synaptic latencies, 
we applied DBN with a range of Markov lags where the maximum 
Markov lag matched the maximum synaptic latency in the 
population while the minimum Markov lag was set to 1. The blue 
curve in Fig. 3 shows that as the synaptic latencies become more 
heterogeneous, the inference accuracy decreases reaching an 
accuracy of 78% at the most heterogeneous network we studied. 

To improve the accuracy, we applied DBN to the same 
population with individual Markov lags instead of a range of 
Markov lags. For example, in the case of a heterogeneity index of 
5, we applied DBN 5 times with Markov lags 1, 2, 3, 4 and 5. We 
then combined the networks inferred by adding them together. The 
red curve in Fig. 3 shows the improvement attained in this case. 

 
4.3. Identifying Connectivity in Large Populations 
 
All the analyses shown so far were carried out on populations of 
10 neurons each. These populations might be considered small 
given that multi-electrode arrays can theoretically record up to a 
few hundreds of neurons. We investigated the scalability of the 
approach as a function of the number of neurons per population by 
simulating 10 different populations, 120 neurons each. Each 
population consisted of 12 clusters of neurons, 10 neurons each, in 
which each neuron received 3 excitatory pre-synaptic connections 
from neurons belonging only to its own cluster. The history 
interval was set to 180 ms and the synaptic latency to 1 bin (3ms). 

Fig. 4 shows a poor inference accuracy of 0.15 when DBN 
was applied to the spike trains of the entire 120-neuron 
populations. However, the performance improved when DBN was 
applied to each of smaller subpopulations. For example, by 
dividing each of the 120 neuron populations into 2 subpopulations, 
60 neurons each, the accuracy increased compared to the 120 
neurons case. This can be a result of the reduction in the search 
space compared to the 120 neurons case. Fig. 4 illustrates the 
performance of applying DBN to subsequent divisions of the 120  
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Fig. 5. Mean IS vs. Markov lag for variable history intervals. 

 
neuron populations into 3, 4, 6 and 12 subpopulations, with 40, 30, 
20, and 10 neurons each, respectively. An inference accuracy of 1 
was achieved on populations of sizes 10 and 20 neurons each. This 
suggests that breaking large populations into smaller 
subpopulations facilitates identifying neuronal connectivity using 
DBN, which we were able to achieve by applying a multiscale 
clustering algorithm prior to using the DBN  [11]. 
 
4.4. Estimating the Markov Lag of Maximum Accuracy 
 
We have demonstrated how the DBN performance is highly 
dependent on the selection of the Markov lag and that the accuracy 
is maximized when the Markov lag is equal to or slightly greater 
than the population true synaptic latency. When dealing with real 
data, prior knowledge of this synaptic latency is not available, and 
thus some measure is needed to estimate the best Markov lag. For 
that purpose, we computed the mean influence score which is the 
mean of the absolute value of the influence score (IS) computed 
for each inferred connection as  [12] 
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where IS(i, j) measures the influence of neuron j on neuron i firing 
that is independent of the output of other parents of neuron i (k  in 
this case),  h  denotes the logical complement of h, and  
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is the cumulative distribution function of the conditional 
probability that neuron i output is less than or equal h given that 
neuron j and k outputs are h and g, respectively. The conditional 
probabilities used in (7) are the same ones used in inferring the 
network. IS can be either positive or negative depending on 
whether the connection is excitatory or inhibitory, respectively.

Fig. 5 shows the mean IS at different Markov lags for the data 
sets investigated in Fig. 2. Comparing Fig. 5 with the accuracy 
shown in Fig. 2, it can be seen that for each choice of history 
interval bins M, the mean IS is maximized at the same Markov lag 
where the accuracy peaks. Thus, the mean IS can be used to 
quantify the confidence in the inferred network. 

 
5. CONCLUSION 

 
We demonstrated the use of DBN in identifying the structures of 
neural networks from observed spike trains. DBN can identify 
direct synaptic connections between distinct neuronal elements. It 
can also identify the direction of those connections. We have 
applied the method to probabilistic neuronal circuit models that 
mimics the stochastic variability experimentally observed in the 
discharge pattern of cortical neurons. The results demonstrate the 

capability of DBN to identify direct connections in multiple 
networks of various characteristics. The proposed approach can be 
useful in quantifying synaptic plasticity that involves variation in 
synaptic interactions typically associated with learning. Another 
application is considering the obtained networks as different states 
of the population that can be used in neural decoding.  
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