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ABSTRACT

In this paper, we consider social peer-to-peer (P2P) networks,

where peers are sharing their resources (i.e., multimedia con-

tent and upload bandwidth). In the considered P2P networks,

peers are self-interested, thereby determining their resource

divisions (i.e., actions) among their associated peers such that

their utility (e.g., multimedia quality) is maximized. Peers

determine their optimal strategies for selecting their action

based on a Markov Decision Process (MDP) framework,

which enables the peers to maximize their cumulative utili-

ties. We consider heterogeneous peers that have different and

limited ability to characterize their resource reciprocations

using only a limited number of states. We investigate how the

limited number of states impacts the resource reciprocation

and the resulting multimedia quality over time. Simulation

results show that peers simultaneously refining their state de-

scriptions can improve the multimedia quality in the resource

reciprocation. Moreover, peers prefer to interact with other

peers that have higher available upload bandwidths as well as

have similar capabilities for refining their number of states.

Index Terms— Social peer-to-peer (P2P) network, evo-

lution of resource reciprocation, Markov decision process.

1. INTRODUCTION

Social network communities such as [1–3] have recently be-

come popular, and among them, peer-to-peer (P2P) applica-

tions represent a large majority of the traffic currently trans-

mitted over the Internet. The traffic exchanged is often multi-

media content, e.g. downloads of multimedia data.

Recently, several solutions have been proposed for gen-

eral file sharing [2,4,5] and multimedia streaming [4,6] in P2P

networks. Among these solutions, we consider data-driven

approaches [4–6], where multimedia content or general files

of each peer are divided into chunks of uniform length and are

then disseminated over the P2P network. Based on the chunk

availability, peers form groups with which they can continu-

ously exchange their chunks. While this approach has been

successfully deployed in P2P applications, key challenges

such as determining optimal resource reciprocation strategies

among self-interested peers still remain largely unaddressed.

A resource reciprocation strategy among self-interested

peers in BitTorrent systems has been developed based on a tit-

for-tat (TFT) strategy, where a peer selects some of its associ-

ated peers (i.e., leechers) which are currently uploading at the

highest rates to download its content [5]. A key disadvantage

of this method is that a peer deploying this strategy decides

its resource reciprocation by evaluating only the current up-

load rates which it receives from its associated peers. Thus,

the resource reciprocation is determined myopically. How-

ever, since peers in P2P networks are generally involved in

repeated, long-term interactions, such myopic decisions can

result in a suboptimal performance for the involved peers.

To take into account the repeated resource reciprocation

among self-interested peers, each peer determines its actions

by considering the probabilistic behavior of resource recipro-

cation of its associated peers. Formalizing the resource recip-

rocation based on a MDP [7] enables the peers to take their

foresighted actions in a way that maximizes their expected

cumulative rewards (e.g., download rates or multimedia qual-

ity). While our previous work [8] shows that the MDP-based

foresighted strategies improve the performance of the P2P ap-

plications, it does not investigate how heterogeneous peers in-

teract with each other based on their different abilities.

We consider heterogeneous peers that have different and

limited abilities to characterize their resource reciprocation.

The resource reciprocation of each peer is described based on

a finite number of state descriptions. Hence, the heteroge-

neous peers cannot differentiate among all possible download

rates from their associated peers. Consequently, a peer may

have multiple actions that are optimal because these actions

do not alter its associated peers’ states, and thus, they do not

alter the resource reciprocation of these peers. We analyti-

cally show that multiple optimal actions exist for such hetero-

geneous peers. Moreover, we show that peers can mutually

improve their download rates only if they simultaneously re-

fine their state descriptions.

This paper is organized as follows. In Section 2, the MDP-

based resource reciprocation strategy for P2P networks is pre-

sented. In Section 3, we study the evolution of resource recip-

rocation for heterogeneous peers. Simulation results are pre-

sented in Section 4 and conclusions are drawn in Section 5.
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2. RESOURCE RECIPROCATION STRATEGY
BASED ON MDP

2.1. Resource Reciprocation Model

In data-driven P2P networks, the set of peers which share their

content and resources (i.e., associated peers) can be consid-

ered as a group1. The group of peer i that consists of NCi

peers is denoted by Ci = {1, . . . , NCi
}. We assume that

each peer decides its resource reciprocation in its group us-

ing an MDP, which is explained in the following. A similar

MDP-based resource reciprocation model can be found in our

previous work [8].

For a peer i, an MDP is a tuple 〈Si,Ai, Pi, Ri〉, where Si

is the state space, Ai is the action space, Pi : Si×Ai×Si →
[0, 1] is a state transition probability function, and Ri : Si →
R

+ is the reward derived in state si ∈ Si.

· State Space Si: A state of peer i represents the re-

ceived resources from the peers in Ci. Peer i’s resources

received from its associated peers in Ci can be expressed

as (x1i, . . . , xNCi
i), where xki (0 ≤ xki ≤ Lk) denotes

the resources provided by peer k ∈ Ci to peer i, and Lk

represents the available maximum upload bandwidth of peer

k. For peer i, its download rates are recognized and repre-

sented by ni discrete values based on its quantization func-

tion ψi, i.e., a download rate from peer xki is mapped into

ψi(xki) = sik ∈ {s1
ik, . . . , sni

ik }. Hence, the state space of

peer i can be expressed as

Si =
{

si = (si1, . . . , siNCi
)
∣∣ sik = ψi(xki), k ∈ Ci

}
. (1)

The set of ni discrete values of {s1
ik, . . . , sni

ik } is referred to
as state descriptions in this paper.

· Action Space Ai: An action of peer i is its resource al-

location to the associated peers in Ci. A set of resource allo-

cations of peer i in Ci can be expressed as (xi1, . . . , xiNCi
),

where
∑

k∈Ci
xik ≤ Li. We assume that the download band-

width of each peer is larger than the upload bandwidth, and

the upload bandwidth is decomposed into “units” of band-

width, denoted by Δxi. Thus, action ai = (ai1, . . . , aiNCi
),

where ail ∈ Z
+, is the number of units of bandwidth that is

allocated to the associated peers. Thus,

Ai = {ai|aik ≤ aM
i ,

∑
k∈Ci

aik ≤ aM
i , k ∈ Ci}, (2)

where aM
i = �Li/Δxi�. Hence, action aik determines peer

k’s download rate from peer i, i.e., xik = aikΔxi.

· State Transition Probability Pai
(si, s

′
i) : A state transi-

tion probability represents the probability that an action of a

peer in a state will lead to another state. In the MDP model,

given a state si ∈ Si at time t, an action ai ∈ Ai of peer

i can lead to another state s′i ∈ Si at t + 1 with probability

Pai(si, s
′
i), defined as

Pai
(si, s

′
i) = Pr(s(t+1)

i = s′i|s(t)
i = si,a

(t+1)
i = ai). (3)

1In this paper, a set of associated peers and a group are interchangeably

used. Groups in P2P networks can be swarms [4] or partnerships [6].

In this paper, we assume that the state transition probabilities

of peers are known; that is, they have been efficiently identi-

fied based on e.g., [8], and available.

· Reward Ri: The reward of a peer in a state represents its

total download rate in that state. Since the state si of peer i
is determined by the download rates from Ci using function

ψi, the download rates in a state can be explicitly determined.

Hence, the reward in a state si = (si1, . . . , siNCi
) can be

expressed as

R(si) =
∑

k∈Ci

ri(sik), (4)

where ri(sik) is a random variable that represents download

rates from peer k in sik.

· Resource Reciprocation Policy π∗
i : The solution to the

MDP is represented by peer i’s optimal resource reciprocation

policy π∗
i , which maps the states to optimal actions. The op-

timal policy can be obtained using well-known methods such

as value iteration or policy iteration [7]. Hence, peer i can

decide its actions based on the optimal policy π∗
i , i.e.,

π∗
i (si) = ai, (5)

for all si ∈ Si. We assume that the optimal policy is continu-

ously updated to capture the changes in the resource recipro-

cation.

2.2. Optimal Resource Reciprocation Strategy

Peers that use the MDP framework for their resource recip-

rocation aim to maximize their cumulative (discounted) ex-

pected download rates (CEDRs) by strategically allocating

their upload bandwidth. The CEDRs at time tc can be ex-

pressed as

RCEDR
i (s(tc)

i ) =
∑∞

t=tc+1
γ

(t−(tc+1))
i · E[R(s(t)

i )], (6)

where constant γi (0 ≤ γi < 1) is referred to as a discount
factor, which determines a tradeoff between immediate re-

ward and future reward2, and R(s(t)
i ) =

∑NCi

l=1 ri(sil) for

s
(t)
i = (si1, . . . , siNCi

). Hence, peer i can determine a set

of actions that maximizes RCEDR
i (s(t)

i ) in (6) for every state

si ∈ Si, which leads to an optimal policy π∗
i . The optimal

policy π∗
i thus maps each state si ∈ Si into a corresponding

optimal action a∗
i , i.e., π∗

i (si) = a∗
i given a number of state

descriptions.

It can be observed from (6) that the granularity of states

(i.e., the number of state descriptions) of the peers impacts

their policy as well as their corresponding actions, which ulti-

mately affects the resulting download rates of all peers. This

is because an optimal policy is mainly affected by the state

transition probability. In the next section, we study the im-

pact of the degree of granularity of state descriptions and its

impact on evolution of resource reciprocation.

2The discount factor γ can represent validity of the expected future re-

wards. For example, a small discount factor is desirable for a transient

regime, while a large discount factor can be used for a stationary regime [9].
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3. EVOLUTION OF RESOURCE RECIPROCATION

As discussed in Section 2, given a number of state descrip-

tions, each peer can determine its optimal strategy and the

corresponding optimal actions based on the proposed MDP-

based approach. In this section, we show that the peers can

additionally improve their mutual download rates by evolving

their resource reciprocation strategies if multiple optimal ac-

tions are available to them. Since the complexity for finding

the optimal policy depends on the number of states3, the max-

imum available number of state descriptions may not be feasi-

ble for each peer. Note that the peers do not need to compute

their new policies while evolving their resource reciprocation.

3.1. Different State Granularity for Heterogeneous Peers

As discussed in Section 2.1, for a peer i with ni state de-

scriptions, a function ψi can map a download rate xki from

peer k into a state description sik, i.e., ψi(xki) = sik ∈
{s1

ik, . . . , sni

ik }. Specifically, we use a uniform quantization

function ψi for maximum and minimum desired download

rates of peer i, LM
i and Lm

i , defined as

ψi(xki) (7)

=

⎧⎪⎨
⎪⎩

s1
ik, if xki ∈ [0, Lm

i + 1
ni

Lm
k LM

k ],
sl

ik, if xki ∈ [Lm
i + l−1

ni
Lm

k LM
k , Lm

i + l
ni

Lm
k LM

k ],
sni

ik , if xki ∈ [Lm
i + l

ni
Lm

k LM
k , Li],

for 2 ≤ l ≤ ni−1 and Lm
k LM

k = LM
k −Lm

k . As shown in (7),

if a smaller number of state descriptions is used given LM
i

and Lm
i , each state description represents a larger interval,

which leads to peer i becoming more insensitive to download

rate variations from its associated peers. Hence, if peers with

different number of state descriptions are reciprocating their

resources, the peers having more state descriptions can have

multiple actions that are optimal to their associated peers.

3.2. Multiple Optimal Actions

Let us consider a peer i with the unit of upload bandwidth

Δxi in a state si ∈ Si interacting with the peers k ∈ Ci. An

optimal action a∗
i is determined by its optimal policy π∗

i .

Proposition 1. If Δxi ≤ Lm
k LM

k /2nk, then there exists mul-
tiple optimal actions for peer i in each of states.

Proof. Let a∗
i = (a∗

i1, . . . , a
∗
iNCi

) be an optimal action of a

peer i determined by π∗
i , i.e., π∗

i (si) = a∗
i . Suppose that a∗

ik

is mapped into sl
ki by peer k, i.e., ψk(a∗

ikΔxi) = sl
ki. Then,

a∗
ikΔxi ∈ [Lm

k + l−1
nk

Lm
k LM

k , Lm
k + l

nk
Lm

k LM
k ] � Rl

k. Since

Δxi ≤ Lm
k LM

k /2nk,

(a∗
ik + 1)Δxi ∈ Rl

k,

3For the value iteration algorithm, the complexity is quadratic in the num-

ber of states [10].

if a∗
ikΔxi ∈ [Lm

k + l−1
nk

Lm
k LM

k , Lm
k + 2l−1

2nk
Lm

k LM
k ], i.e.,

ψk(a∗
ik + 1) = ψk(a∗

ik). Alternately,

(a∗
ik − 1)Δxi ∈ Rl

k,

if a∗
ikΔxi ∈ [Lm

k + 2l−1
2nk

Lm
k LM

k , Lm
k + l

nk
Lm

k LM
k ], i.e.,

ψk(a∗
ik − 1) = ψk(a∗

ik). Therefore, if Δxi ≤ Lm
k LM

k /2nk,

there exist actions ai = (ai1, . . . , aiNCi
) 	= a∗

i that cannot be

differentiated by peers k ∈ Ci. Hence, the actions ai are also

optimal, concluding that peer i can have multiple optimal

actions given its state si ∈ Si and optimal policy π∗
i .

Proposition 1 shows that peers can have multiple optimal

actions, which enable them to maximize their CEDRs in their

groups. Hence, given a policy π∗
i , using different optimal

actions results in the same CEDRs for peer i, unless the asso-

ciated peers refine their state descriptions such that they can

differentiate the actions.

If several peers can simultaneously refine their state de-

scriptions, and thus, they can differentiate their associated

peers’ optimal actions, then they can select actions benefi-

cial to each other. This leads them to mutually improve their

download rates, i.e., the resource reciprocation evolves. On

the other hand, peers that use a fixed number of state descrip-

tions in their resource reciprocation will be penalized by their

associated peers that can keep refining their state descriptions.

The evolution of resource reciprocation is quantitatively eval-

uated through simulation results in Section 4.

4. SIMULATION RESULTS

To highlight the impact of the evolution of resource recipro-

cation, we assume that each peer currently adopts the optimal

policy and the initial resource reciprocation is determined by

the policy. The policy is implemented based on the value it-

eration method [7].

4.1. Evolution of Resource Reciprocation and its Impact
on Multimedia Quality

In this simulation, we consider an illustrative group with three

peers, which have multiple optimal actions and can refine

their state descriptions over time. We assume that Lm
i = 0

and LM
i = 208Kbps, 222Kbps, and 258Kbps for peer i =

1, 2, 3, respectively. The unit of bandwidth is 2Kbps, (Δxi =
2Kbps), and initial numbers of state descriptions are 2, 2,

and 2 for peer 1, 2, and 3, respectively. For illustration, in

the considered group, peer 1 and peer 2 can refine their state

descriptions, while peer 3 cannot. Without loss of general-

ity, we assume that the peers simultaneously refine their state

description by doubling the number of state descriptions for

each state (i.e., using 1 bit more for state descriptions) at their

15, 50, 75, and 95th resource reciprocation. We assume that a

video sequence (Foreman) at CIF (352×288) resolution, 30
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frames/sec, and encoded in a prioritized manner using the

H.264/AVC encoder is exchanged. The encoded video file

is partitioned into chunks that have uniform size of 20Kbits.

Simulation results are shown in Fig. 1, which shows the

resulting multimedia quality measured in PSNR (Peak Signal

to Noise Rati) among the peers in the group. Fig. 1 clearly

shows that two peers (i.e., peer 1 and peer 2) can improve

their multimedia qualities, by simultaneously increasing the

number of state descriptions, while peer 3 cannot. Hence, the

average download rates of peer 1 and peer 2 improve as re-

fined state descriptions are used. Note that we can observe

that the improvement by increasing the number of state de-

scriptions in this resource reciprocation process is bounded,

as this resource reciprocations are initiated by a fixed number

of state descriptions that is determined by the MDP.

4.2. Clustering among Heterogeneous Peers

In this section, we study how heterogeneous peers are clus-

tered, forming their groups. While forming groups, they con-

sider the expected download rates achieved by the CEDR as

well as the evolution of resource reciprocation.

Fig. 2 shows the distribution of probabilities that each peer

forms a group with the other peers. To highlight the impact

of peers’ heterogeneity on clustering, we assume that peers

are classified into three categories based on their ability to re-

fine their state descriptions or based on their available upload

bandwidth. Peers in the same class have the same maximum

available bandwidth. However, peers in a category are divided

into 5 sub-classes based on their ability to refine their state de-

scriptions. Two peers are included in each sub-class, and the

peers with higher peer index in each category can refine more

state descriptions. From the results shown in Fig. 2, we can

also verify that peers prefer to make groups with peers who

have the same ability to refine their state descriptions, and

who have a higher available bandwidth.

5. CONCLUSIONS

We study the interactions among self-interested peers by shar-

ing their resources in P2P networks. We show that MDP-

based resource reciprocation strategy for peers’ upload band-

width allocation enables them to maximize their long-term

multimedia quality. We analytically investigate the impact

of peers’ heterogeneous ability to refine their state descrip-

tions on their interactions of resource reciprocation. We show

that peers can achieve higher multimedia quality if they si-

multaneously improve their state descriptions. Finally, group

formation for heterogeneous peers is discussed, showing that

peers prefer to form groups with other peers that have a sim-

ilar ability to refine state descriptions, but also have higher

upload bandwidths.
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