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ABSTRACT
Biased estimation has the advantage of reducing the Mean

Squared Error (MSE) of an estimator. The question of inter-

est is how biased estimation affects model selection. In this

paper, we introduce biased estimation to a range of model se-

lection criteria. Specifically, we analyze the performance of

the Minimum Description Length (MDL) criterion based on

biased and unbiased estimation and compare it against mod-

ern model selection criteria such as Kay’s conditional model

order estimator (CME), the Bootstrap and the more recently

proposed Hook-and-Loop resampling based model selection.

The advantages and limitations of the considered techniques

are discussed. The results indicate that, in some cases, biased

estimators can slightly improve the selection of the correct

model. We also give an example for which the CME with an

unbiased estimator fails, but could regain its power when a

biased estimator is used.

Index Terms— biased estimation, model selection,

model order estimation, bootstrap

1. INTRODUCTION

There are many engineering applications in which there is

an interest in determining an optimal set of parameters in a

model. Techniques for performing such a task are termed

model selection. In many applications the considered model

can be expressed in terms of a linear (in the parameters) ma-

trix equation. Consider the linear model

y = Xθ + w,

where X is a known full rank matrix of size N × p, θ is a p
vector-valued unknown paramter and w is the noise vector of

an unknown distribution with mean zero and covariance σ2
wI .

In such a model, two fundamental problems arise. Firstly, the

question to ask is how to estimate the number of the parameter

p, and then whether there is a subset of {1, . . . , p} that will

best (in some sense) represent the data. Although in most

practical cases, it is sufficient to choose only the model order,

p, we also consider selecting a particular model being a subset

of {1, . . . , p}.

Several model selection procedures can be applied to find

the optimal model. Some of the more commonly used model

selection procedures include Akaike’s information criterion

(AIC) [1], Rissanen’s minimum description length (MDL)

criterion [2], and their variants. Recently, Kay [3], proposed

a conditional model order estimator (CME) that is based on

the theory of sufficient statistics. Also, bootstrap based model

selection techniques have been widely used in many practical

problems [4, 5]. They proved to be asymptotically more accu-

rate than other techniques [6]. One drawback of the bootstrap

for model selection is the necessity of selecting a suitable

scaling parameter for the detrended residuals in the resam-

pling procedure. A resampling scheme, called the “ Hook-

and-Loop” (HL), has been recently proposed to avoid scaling

problems [7]. The HL resampling scheme has shown supe-

rior performance to its bootstrap predecessor in the context of

model selection and model order selection [8].

Biased estimators have recently shown superior perfro-

mance as compared to minimum variance unbiased (MVU)

estimators in view of minimizing the MSE of an estimator [9].

This is accomplished by scaling (i.e., shrinking) the unbi-

ased estimator in order to get a biased estimator which has

a smaller MSE than the unbiased one. It has been proved in

[9] that for a wide range of theoretical models, such a scal-

ing factor can be found using convex optimization techniques

(solving a minimax problem).

In this work, we investigate the applicability of biased es-

timation in the context of model and model order selection.

We compare the performance of several model selection tech-

niques (MDL, CME, Bootstrap and HL) derived from unbi-

ased and biased estimators. We show by simulation that bi-

ased estimation based model selection techniques can outper-

form unbiased estimation based model selection.
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2. METHODOLOGIES

Let β, which we call from now on the model, be a subset

of {1, . . . , p}. Subsequently, let Xβ be a sub-matrix of X
and θβ be a sub-vector of θ, both containing the components

indexed by the integers in β. Then, a model corresponding to

β is [5]

y = Xβθβ + w.

The aim of model selction is to choose, or more precisely

estimate, model β so that it best represents the data.

The MDL and the CME [3] criteria find the model that

minimizes

MDL(β) =
N

2
ln σ̂2

β +
pβ + 1

2
lnN,

and

CME(β) =
N − pβ − 2

2
ln σ̂2

β +
1
2

ln |X ′
βXβ |

+ ln
[π(N − pβ)](N−pβ)/2

Γ
(

N−pβ

2

) ,

respectively. Herein, pβ is the number of elements in the

model β, Γ(·) is the Euler’s Gamma function, and

σ̂2
β =

1
N − pβ

(y − Xβ θ̂β)′(y − Xβ θ̂β).

In the above, θ̂β is simply the least-squares estimator of the

parameter vector θ conditioned on the model β, given by

θ̂β =
(
X ′

βXβ

)−1
X ′

βy.

It should be noted that CME has been designed in the context

of a full model and as such can only be used for model order

estimation.

For the Bootstrap approach, given observations

y1, y2, . . . , yN ,

we first calculate the least-squares estimate θ̂α and the result-

ing residuals

ŵt = yt − X ′
αtθ̂α, t = 1, 2, . . . , N,

where α = {1, 2, . . . , p} is the full model and X ′
αt is the tth

row of Xα. Then, we resample with replacement from√
N/m(ŵt − ŵ·)/

√
1 − p/N,

t = 1, 2, . . . , N to obtain ŵ∗
t , where ŵ· = 1/N

∑N
t=1 ŵ. A

scaling parameter m is introduced such that m/N → 0 and

N

m
max
t≤N

X ′
βt(X

′
βXβ)−1Xβt → 0

for all β.

In the HL resampling scheme, we sort the detrended resid-

uals

ŵ1 − ŵ·, ŵ2 − ŵ·, . . . , ŵn − ŵ·

in an increasing order to obtain a set of residuals

ŵ(1) < ŵ(2) < . . . < ŵ(N)

and generate a new HL sample using, for example,

ŵ∗
(i) =

1
2

(
w(i) + w(i+1)

)
+ εi

where

εi ∼ N
(

0,

[
1
6

(
w(i+1) − w(i)

)]2
)

.

The HL residuals are then further ordered according to the

strength of the signal yt [7]. Next, we compute

y∗
t = X ′

βtθ̂β + v̂∗t , t = 1, 2, . . . , N

where v̂∗
t , t = 1, 2, . . . , N , denote either the Bootstrap or

the HL residuals, and the least-squares estimate θ̂
∗
β,m is cal-

culated from (y∗
t , Xβt). Resampling is repeated B times to

obtain θ̂
∗(i)
β,m and the bootstrap estimate of the residual squared

error

Γ̂∗(i)
N,m(β) =

‖y − Xβ θ̂
∗(i)
β,m‖2

N
, i = 1, . . . , B .

Finally, we average Γ̂∗(i)
N,m(β) over i = 1, . . . , B to obtain

Γ̄∗
N,m and minimize over β to obtain β̂0.

To implement the biased estimator (θ̂b), we assume it is a

scaled version of the unbiased one (θ̂u) as given by [9]

θ̂b = (1 + k)θ̂u. (1)

where k is the scaling factor. The MSE of the biased estimator

can be expressed as

MSE(θ̂b) = (1 + k)2var(θ̂u) + k2θ2. (2)

We assume that our true parameter, θ, equals θ̂u and we sim-

ply search for the value k which minimizes Eq. (2). There-

fore, we can calculate the biased estimator by substituting in

Eq. (1). Obtaining the model estimator or the model order

estimator is hence straightforward as we have to repeat cal-

culations for the MDL, the CME, the Bootstrap and the HL

techniques using the biased estimator, θ̂b.

3. SIMULATION RESULTS WITH DISCUSSION

We present the simulation results for two examples in the con-

text of model and model order selection. We compare the per-

formance of the different approaches described above across

3462



Table 1. Percentages of selecting the correct model evalu-

ated over 1000 independent Monte Carlo runs for the polyno-

mial of Eq. (3) with Gaussian noise. The highest probabilities

achieved for each of the cases are indicated in bold fonts.

SNR MDL Bootstrap HL

N [dB] U B U B U B

0 0.5 0.5 0.0 0.0 1.0 1.0
10 14.7 11.5 0.5 0.4 52.1 45.0

32 20 87.1 88.5 74.9 75.1 95.0 28.0

30 95.5 97.1 99.5 99.7 97.4 93.5

40 95.9 97.7 99.7 99.8 97.8 94.6

0 39.4 39.1 0.5 0.3 47.4 38.7

10 96.2 96.2 74.3 73.9 97.2 96.1

64 20 96.7 97.9 99.7 99.7 99.7 98.7

30 98.1 99.4 99.9 100.0 100.0 98.8

40 98.1 99.2 99.7 99.9 99.8 98.8

0 46.5 48.0 0.1 0.3 50.5 18.4

10 90.6 91.2 63.1 61.9 82.3 77.2

128 20 98.8 99.1 99.5 99.4 100.0 100.0
30 98.9 99.3 99.9 100.0 100.0 100.0
40 98.3 99.0 99.6 99.6 100.0 100.0

different Signal-to-Noise Ratios (SNR) for both biased and

unbiased estimators. In all simulations, the Bootstrap and the

HL repetitions are set to B = 100 and the scaling paramter,

m, is set to 2 for the Bootstrap procedure [5], [7] and [8].

Only Gaussian noise models with identically and indepen-

dently distributed (i.i.d.) random variables are considered

here. It was shown in [6] that bootstrap techniques perform

better than information criteria for model selection in the non-

Gaussian case. It is not the objective to demonstrate here that

the bootstrap is superior also when using biased estimators.

In this work, we are primarily concerned with the effect of

biased estimation on some model selectors.

3.1. Model Selection

We choose a polynomial from [5] given by

yt = 0+0+0.035t2 − 0.0005t3 +wt, t = 1, . . . , N, (3)

to evaluate the performance of biased (B) and unbiased (U)

estimators for model selection. The model is then normalized

over t. Table 1 shows the probabilities of selecting the correct

model using the MDL, the Bootstrap and the HL. Different

signal lengths (N = 32, N = 64 and N = 128) are used

with an SNR ranging between 0 dB and 40 dB.

We observe that for an SNR larger than 20 dB, the bi-

ased estimators yield higher probabilities of selecting the cor-

rect model than the unbiased ones for the MDL criterion,

but not necessarily for the Bootstrap and HL model selction

schemes. For the Bootstrap, the application of a biased es-

timator increases sometimes the probability of selecting the

Table 2. Percentages of correct selection of the model order

evaluated over 1000 independent Monte Carlo runs for the

model in Eq. (4) with w(t) Gaussian. The highest probabili-

ties achieved for each of the cases are indicated in bold fonts.

MDL CME

σ2 U B U B

10 94.0 97.7 100.0 100.0
15 92.5 94.4 100.0 100.0
20 93.2 92.6 100.0 99.9

25 94.3 90.9 100.0 99.9

30 92.3 89.1 99.9 99.6

35 92.9 86.8 99.8 98.4

40 93.8 86.3 99.7 96.2

45 93.6 84.1 99.3 93.5
50 92.4 78.1 99.3 87.9

correct model, but it does not for the HL method when the

probability of correct detection decreases, except when both

the SNR and the sample size are high. It is worth noting that a

biased estimator for Bootstrap model selection leads to higher

probabilities as compared to the biased ones for the MDL cri-

terion. In Table 1, the highest probabilities achieved for each

of the cases are indicated in bold fonts, showing that the over-

all performance achieved with the HL method based on un-

biased estimators is superior to the MDL and the bootstrap

based technique counterparts.

3.2. Model Order Selection: Example 1

For evaluating the performance of the biased estimators in the

context of non-iterative model order selection (i.e., the MDL

and CME criteria), we choose the polynomial trend from [3]

in noise, given by

yt = 0 + 0.4t + 0.1t2 + wt, (4)

where t = 1, . . . , N . In Table 2, We compare the probability

of selecting the correct model order (second order in this case)

for a signal length of N = 30 and a noise variance, ranging

from σ2 = 10 to σ2 = 50. The highest possible model order

was set to 10.

We observe in Table 2 that the unbiased estimators lead

to a CME which performs better than the MDL (as proved

in [3]). Moreover, biased estimators for the CME yield higher

accuracies than their counterparts of the MDL for all noise

variances. However, biased estimators give lower probabili-

ties than unbiased ones for both the CME and the MDL crite-

ria.

3.3. Model Order Selection: Example 2

We use the polynomial of Eq. (3) to evaluate the performance

of biased and unbiased estimators for model order selection
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Table 3. The percentages of selecting the correct model or-

der evaluated over 1000 independent Monte Carlo runs for the

polynomial of Eq. (3) with Gaussian noise. The highest prob-

abilities achieved for each of the cases are indicated in bold

fonts.

SNR MDL CME Bootstrap HL

N [dB] U B U B U B U B

0 0.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0

10 3.3 2.1 0.0 0.0 0.2 0.0 0.0 0.5

32 20 35.9 24.2 0.0 3.5 13.5 6.6 29.0 32.0

30 96.4 79.1 0.0 47.8 95.2 38.1 84.5 44.4

40 93.8 97.5 0.0 91.1 97.8 96.1 91.9 82.2

0 3.9 3.2 0.0 0.0 0.0 0.0 0.0 0.0

10 88.9 41.7 0.0 1.6 12.2 4.7 0.0 0.0

64 20 96.6 79.7 0.0 29.4 98.3 73.2 11.7 12.5

30 98.5 97.0 0.0 94.0 99.2 95.4 91.6 70.5

40 97.2 99.5 0.0 98.7 98.7 99.3 89.9 60.2

0 18.7 12.5 0.0 0.1 0.0 0.1 0.0 0.0

10 98.0 41.0 0.0 2.2 8.7 4.8 0.0 0.0

128 20 98.0 85.6 0.0 46.5 98.6 73.9 60.0 10.7

30 98.3 99.2 0.0 89.4 99.3 99.7 100.0 66.1

40 98.6 99.2 0.0 97.2 98.5 99.6 100.0 77.0

(third order in this case) using the MDL, the CME, the Boot-

strap and the HL. Different signal lengths (N = 32, N = 64
and N = 128) are used with an SNR, ranging between 0 dB

and 40 dB, as shown in Table 3. The highest considered

model order was set to 10.

The example chosen here shows a breakdown of the CME,

which always selects the highest possible model order (i.e.,

10 rather than 3). Interestingly, the CME regains some of its

power when a biased estimator is used, but its performance

is still lower than that of the corresponding MDL. This indi-

cates that biased estimates for the CME lead to better results

than unbiased estimates. The results also indicate that biased

estimators can lead to a slightly higher probability of select-

ing the correct model order at high SNR, but not for the HL

method. Overall the performance of the unbiased estimator

based MDL is best for a low SNR while the Bootstrap and

HL excel at a higher SNR.

4. CONCLUSIONS

We have investigated the applicability of biased estimation

in model and model order selection. A model selection is

often based on the minimization of a MSE based criterion.

Hence, further minimization of the MSE via biased estima-

tion could lead to better results. This study was undertaken to

assess whether biased estimation would affect the probability

of selecting the correct model or model order. No theoreti-

cal results for the consistency for model selection with biased

estimators have been reported here. We primarily were in-

terested in evaluating the behavior of a few model selection

techniques in view of biased estimation. Techniques such as

AIC, the corrected AIC, and Hannan and Quinn’s criterion

yielded very similar results to those of the MDL and hence

we restricted our choice here to the MDL criterion. Emphasis

was given to modern techniques such as the CME, the Boot-

strap and the HL model selectors. We have shown that model

selection with biased estimators can sometimes slightly in-

crease the probability of selecting the correct model but this

is not true for model order selection, except for the CME.

The results of this paper highlight the continued difficulty in

selecting an appropriate model order selection technique in

practice.
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