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ABSTRACT

In this work we provide an accurate analytical estimation of
the frame bounds for frequency warping operators of arbitrary
shaped non-smooth warping maps. We deal with both the
Nonuniform Fourier Transform approximation and the alias-
ing suppressed form of the frequency warping operator. The
estimation procedure is obtained by using an analytical model
of the aliasing operators which has been previously intro-
duced. The provided estimations can be used as design for-
mulas for the parameters, such as degree of smoothness and
redundancy, involved in the definition of the frequency warp-
ing operators.

Index Terms— Frequency Warping, Frame Bounds.

1. INTRODUCTION

Warping was originally introduced in signal processing as a
new paradigm allowing the generalization of time-frequency
transformations techniques suffering of some restrictions in
the way the time-frequency plane can be tiles. The basic idea
is to adaptively apply a preliminary invertible transformation
to the input signal so that it can match the characteristics of
the following signal processing [1]. This adapted transforma-
tion consists of a deformation of either of the frequency or of
the time axis. Here we focus on the first kind.

Frequency warping has been commonly addressed by a
Laguerre transform approach [2]. Although giving an inter-
pretation key in the framework of digital filters, this approach
has many drawbacks, such as high computational complexity
and restrictions in the choice of the warping map.

So, frequency warping has been conveniently placed in
the framework of finite length transforms [3], allowing more
degrees of freedom in the design of the warping map, that is in
the way the transformation can be adapted to the input signal
features. Some computational issues have been treated and
solved [4, 5] about frequency warping operators of arbitrary
non-smooth maps. Thanks to the invertible property and the
intrinsic redundancy, frequency warping can also be seen as a
frame operator. Here we cope with problem of estimating the
frame bounds in case of non-smooth maps.

2. FREQUENCY WARPING OPERATORS

Given a discrete-time signal, we want to introduce a deforma-
tion of the periodic frequency axis f with a proper warping
function w(f). In order to guarantee invertibility, w(f) has
to be chosen so that it maps f axis on itself. The warping
function w(f) is defined in the interval [−1/2, 1/2] (or equiv-
alently in [0, 1]) and extended as w(f + k) = k + w(f), with
k ∈ Z. Moreover, it must be an odd function in order to guar-
antee that a real signal is transformed into a real signal. The
frequency warping operator can be written as the composi-
tion of an inverse discrete Fourier transform F and a modified
discrete Fourier transform Fw:

W = F−1Fw (1)

where Fw is defined as follows:

[Fws](f) =
√

ẇ(f)
∑
n∈Z

s(n)e−j2πnw(f). (2)

The term
√

ẇ(f), where ẇ represents the derivative, has been
introduced in order to make the operator be unitary, i.e. pre-
serve orthogonality. By doing so, the operator kernel is a ma-
trix of infinite dimensions whose elements are given by:

W(m, n) =

∫ 1

0

√
ẇ(f) ej2π(mf−nw(f))df m, n ∈ Z. (3)

Then the input sequence is limited to N samples, while the
output sequence length M has to respect the requirement
M > N max ẇ in order to guarantee invertibility. Being
represented by an M × N invertible transformation, fre-
quency warping is a frame. As M tends to infinite, the matrix
columns tends to be orthogonal and the operator tends to be a
tight frame, i.e. it can be inverted by applying the transpose
operator. So, the first kind of warping operator we consider is
given by:

WM,N : s �→
∑

n∈ZN

W(m, n)s(n) m ∈ ZM . (4)

ZN and ZM are given by ZN = {−N/2, . . . , N/2− 1} and
ZM = {−M/2, . . . , M/2− 1}. We will refer to this kind of
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(a) Absolute value of the entries of a truncated warping matrix

−128

−64

0

64

128

−256

−128

0

128

256

10
−10

10
−5

10
0

nm

(b) Absolute value of the entries of an aliasing-affected warping matrix

Fig. 1: Addressed warping operators are depicted, aliasing free (a) and alias-
ing affected (b). Although the two operators are almost equal, the presence
of aliasing in (b) can cause a considerable difference in frame bounds

operator as truncated warping operator. An example of it is
depicted in fig. 1(a).

An approximation of (4) is obtained by sampling the (1):

WM,N = F−1
M Fw,M,N (5)

where FM is the M × M Discrete Fourier Transform and
Fw,M,N is an orthogonalized Nonuniform Discrete Fourier
Transform on M discrete frequencies fk = k/M , k ∈ ZM :

[Fw,M,Ns](m) =
√

ẇ(fk)
∑

n∈ZN

s(n)e−j2πnw(fk). (6)

Operator (5) will be addressed as frequency sampled warping
operator. An example is shown in fig. 1(b). It has been intro-
duced in [3] since operator (4), according to the formulation
(1), involves an integral so it is hardly computable. Its fre-
quency sampled version (5) is computable by fast algorithms

V = nk

(N/2)k

U

SK

Q = diag[e−j2πnw(ξi)]

N×N

M×M

K×N

M×K

K×K

P = diag[ej2πmξi ]

Fig. 2: Schematic structure of the computation of matrix AM,N . The
resulting algorithm is fast since the total amount of multiplications is ∝

K(M + N) and K � N .

such as the Fast Fourier Transform (FFT) and the Nonuniform
Fast Fourier Transform (NUFFT) [6] instead.

The relationship between WM,N andWM,N has been in-
vestigated in [4, 5]. The sampling operation in the Fourier
domain introduces aliasing in the warped signal domain rep-
resented by the transformation AM,N :

WM,N =WM,N − AM,N (7)

In case the warping map w is not a smooth function, that is
w ∈ Cσ , an analytical computational model for AM,N has
been introduced. By supposing that w has singularities on
ξi ∈ [0, 1] satisfying Mξi ∈ N, we have:

AM,N =
∑

i

[PUSVQ](ξi) (8)

where P and Q are diagonal matrixes obtained from the vec-
tors ej2πmξi and e−j2πnw(ξi) respectively. V and U are a
K ×N and a M ×K matrix respectively:

V(k, n) =
nk

(N/2)k
n ∈ ZN , k ∈ N (9)

U(m, k) =
(−1)k−1

2k(k − 1)!
Dkζ (m/M) m ∈ ZM , k ∈ N

(10)

where Dk represents the k-th derivative and ζ is an analyti-
cally known function. Finally, S is a K × K lower triangu-
lar matrix, whose entries depend on the warping map w and
on N and M only. K is an arbitrary value which is shown
to be small in comparison to N , as it appears from fig. 3. A
schematic representation of the algorithm is depicted in fig. 2.

The decomposition (8) derives from a representation for
the tails of matrix W for m /∈ ZM . We refer to this matrix as
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Fig. 3: Absolute value of matrix S entries for σ = 1, N = 28 and M = 2N .
Most of the energy is concentrated along the σ-th lower diagonal.

error matrix, since it is the error introduced by truncation:

EM,N =
∑

i

[PYSVQ](ξi) (11)

where P is now obtained from vector ej2πmξi with m /∈ ZM

and Y is given by:

Y(m, k) =
m−(i+1)

(M/2)−(i+1)
m /∈ ZM , i ∈ N. (12)

3. FRAME BOUNDS ESTIMATION

For discrete operators, frame bounds are actually given by
the minimum and the maximum eigenvalue of the product be-
tween the transposed operator and the operator itself. Frame
bounds will be addresses, as usual in literature, by A and B,
B ≥ A. Since they have to be positive, the resulting matrix
has to be positive definite. Moreover, they define many prop-
erties of considered transformation, in particular the quantity
|B/A− 1| is the maximum euclidian norm of the error vector
which can be obtained when the output is scaled by a factor
in [B−1, A−1]. In case of frequency warping, as M tends to
infinite, A and B tends to 1, so the scaling factor is 1 and
the maximum error norm results to be the maximum between
B − 1 and 1 − A. So, by estimating the error matrix norm,
one gets an estimation of the frame bounds. Hence here we
try to estimate:

ε = ‖W′
M,NWM,N − I‖ (13)

ε = ‖W ′
M,NWM,N − I‖. (14)

For estimating ε we point out that (13) is equivalent to
‖E′M,NEM,N‖ and we take advantage of decomposition
(11). With proper hypothesis when multiple singularities
are considered, we reduce to the following:

ε = ‖V′S†Y′YSV‖

then S is substituted by the σ-th lower diagonal, Y′Y, which is
analytically computable and proportional to M , is substituted
by the σ-th entry of the main diagonal and the effect of V is
represented by a factor N . Finally we get:

ε �
�(M/N)

π2σ+2(2σ + 1)
·

N

M2σ+1
·Δ2 (15)

Δ represents the differential value between ξ+ and ξ− of:

Dw(ξ)−1/2Dσ+1w(ξ)

while � is:

� = max
x

[(
M

NDw(ξ)

)−x+σ
2x− σ + 1

2(σ + 1)!

σ−1∏
l=0

(x− l)

]2

(16)
which corresponds to the square maximum of the σ-th lower
diagonal of S (see fig. 3). A quasi–exact analytical solution
has been provided for �. The expression (15) has to be slightly
modified in the case σ = 0.

In order to estimate ε we take advantage of equation (7):

ε � 2‖W†
M,NAM,N‖ = 2‖A†M,NWM,NW

†
M,NAM,N‖

1/2.

For σ > 0 the product WM,NW
†
M,N can be safely substi-

tuted by its main diagonal, whose shape can be analytically
derived starting from the warping map. Then the model (8) is
substituted and it turns out:

ε � 2‖V′S†U′DUSV‖1/2 (17)

where diag(D) = diag(WM,NW
†
M,N). Then only an esti-

mation for diag(U′DU) is needed to trace the estimation of ε
back to the form (15). Matrix D has only N maxDw signif-
icant values, so that it actually selects the central values of U
columns, that is U(m, k) with m ∈ Z�N max Dw�. The σ-th
entry of diag(U′DU) results to be the energy of U(m, σ) with
m ∈ Z�N max Dw�, which behaves like a constant in case σ is
odd and like m in case σ is even. So energies are proportional
to M2mod2(σ+1):

ε �
1

2

(
�(M/N)

π2σ+2
·

κN

M2(σ+1+mod2(σ+1))
·Δ2

)1/2

. (18)

In case σ is odd κ is exactly proportional to N according to
values of Dkζ(0) (see eq. (10)). In case σ is even κ is roughly
proportional to N3 but has to be numerically computed.

The estimations (15) and (18) have been obtained by im-
posing the convergence to the exact values for M tending to
∞. So, apart from a possible lack in accuracy for M close to
N max Dw, these estimations describe the analytical depen-
dency of the frame bounds on the design variables N , M and
σ. Moreover, they allow to evaluate the advantage obtained
by using the aliasing free frequency warping operator rather
than the frequency sampled one. Finally, the solution of (16)
allows to estimate the required K to make the computation of
the aliasing matrix AM,N converge.
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Fig. 4: Frequency deviation, i.e. w(f) − f , of the warping maps used in the
for evaluating the performances of the frame bounds estimation.

4. EXPERIMENTAL RESULTS

To evaluate performances, we consider frequency maps hav-
ing a single singularities in ξ = 1/4 (a singularity in ξ =
−1/4 is also present) with different degrees of smoothness:

wσ(f) =

⎧⎪⎪⎨
⎪⎪⎩

6

5
f f ∈ [0, 1/4]

1

2
+

σ∑
i=0

ai(f −
1

2
)2i+1 f ∈ [1/4, 1/2]

.

Coefficients ai are obtained by imposing the first σ derivatives
to be null on ξ. The frequency deviations of these maps are
depicted in fig. 4. N has been fixed to 28 and the redundancy
M/N varies from its lower allowed value maxDw = 6/5,
which is the same for all the considered maps, to the very
large value 25, to be able to check the asymptotic behavior.

Estimation results are shown in fig. 5 for WM,N and
WM,N respectively. The second case is shown to be very
accurate while the first case is a bit inaccurate for small M
but still converges for large M . As we predicted when the
approximation (17) has been done, the model completely fails
for WM,N when σ = 0. The considered maps represent a
bad case in the sense that the slope of w on the singularity is
equal to the maximum slope. Having a smaller slope on the
singularity improves the estimation accuracy.

5. CONCLUSIONS

We dealt with the problem of frame bounds estimation for
frequency warping operators of non-smooth warping maps.
We gave estimations formulas for both the aliasing affected
and the aliasing free form of the frequency warping operator.
The estimations are proven to be effective and can be used for
designing warping operators satisfying specific requirements
in reconstruction accuracy.
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Fig. 5: Error norm estimations (solid line) and computed error norms (dia-
monds) of the frequency sampled (a) and truncated warping operator (b) for
σ = 0, . . . , 4. Computed norms saturates to a lower computational limit.
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