
SKELLAMSHRINK: POISSON INTENSITY ESTIMATION FOR VECTOR-VALUED DATA

Keigo Hirakawa and Patrick J. Wolfe

Statistics and Information Sciences Laboratory
Harvard University, School of Engineering and Applied Sciences

Oxford Street, Cambridge, MA 02138 USA
{hirakawa, wolfe}@stat.harvard.edu

ABSTRACT

Owing to the stochastic nature of discrete processes such as photon
counts in imaging, a variety of real-world data are well modeled as
Poisson random variables whose means are in turn proportional to
an underlying vector-valued signal of interest. Certain wavelet and
filterbank transform coefficients corresponding to measurements of
this type are distributed as sums and differences of Poisson counts,
taking in the simplest case the so-called Skellam distribution. We
show that a Skellam mean estimator provides a Poisson intensity
estimation method based on shrinkage of filterbank coefficients, and
a means of estimating the risk of any Skellam mean estimator is
derived in closed form under a frequentist model.

Index Terms— Filterbank transforms, Poisson distribution, Skel-
lam distribution, SkellamShrink, wavelets.

1. INTRODUCTION

Real-world sensing devices are subject to various types of measure-
ment noise; for example, losses in resolution (e.g., quantization ef-
fects), randomness inherent in the signal of interest (e.g., photon
or packet arrival), and variabilities in physical devices (e.g., ther-
mal noise, electron leakage) can all contribute significantly to signal
degradation. Estimation of a vector-valued signal f ∈ R

N given
noisy observations g ∈ R

N therefore plays a prominent role in a
variety of engineering applications such as signal processing, digital
communications, and astronomical and biomedical imaging.

Motivated by both prior knowledge and empirical studies, sta-
tistical modeling of latent variables in linear transform domains has
enjoyed tremendous popularity across these diverse applications—in
particular, wavelets and other filterbank transforms provide conve-
nient platforms; as is by now universally acknowledged, such classes
of transform coefficients tend to exhibit temporal and spectral lo-
cality, sparsity, and energy compaction properties for a variety of
natural data sets. In this setting, the special case of additive white
Gaussian noise (AWGN) is by far the most studied scenario, as the
distribution of transform coefficients is readily accessible when the
likelihood function has a closed form in the transform domain. The
twin assumptions of additivity and Gaussianity, however, are clearly
inadequate for many genuine engineering applications; for instance,
measurement noise is often dependent on the range space of the sig-
nal f , effects of which permeate across multiple transform coeffi-
cients and subbands [1]. As an important example, the number of
electrons or photons gi measured over the ith spatio-temporal inte-
gration region in a sensor array is well modeled as a Poisson random
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variable gi ∼ P(fi), where fi is proportional to the electric current
or the light intensity in that region. Recall that for gi ∼ P(fi) we
have that E gi = Var(gi) = fi, and so in the case at hand fi is
proportional to the expected electron or photon count per ith inte-
gration region, with the resultant “noise” in the form of variability
being signal-dependent and heteroscedastic rather than homoscedas-
tic (i.e., of constant variance).

Classical strategies overcome the problems associated with Pois-
son intensity estimation by exploiting the asymptotic behavior of the
Poisson distribution. In an approach termed variance stabilization,
one seeks an invertible nonlinear operator that (approximately) maps
the heteroscedastic process realizations to the familiar additive Gaus-
sian setting [2–8]. Based on techniques such as cross-validation,
level-dependent shrinkage thresholds adjusted for Poisson distribu-
tion have also been proposed [9–11]. An alternative to the asymp-
totic approximation approach is to work with the heteroscedastic
noise directly, either by leveraging the independence of Poisson vari-
ables [12–14] or explicitly encoding the dependencies between Pois-
son variables in the context of Haar frames [15, 16].

In this paper, we treat Poisson intensity estimation for vector-
valued data in the Haar wavelet and filterbank transform domains
directly by way of the Skellam distribution [17], whose use to date
appears largely limited [18–20]. Our approach to combining Skel-
lam distribution with the Haar transform domain differs from the
prior art in that we derive level-dependent optimal shrinkage based
on an exact rather than asymptotic analysis. After briefly reviewing
wavelet and filterbank coefficient models in Section 2, we consider
in Section 3 a means of estimating the risk of shrinkage operators un-
der the Skellam distribution. Simulation studies presented in Section
4 verify the effectiveness of our approach, and a brief discussion of
its relationship to SUREShrink [21] and the Haar-Fisz algorithm [8]
is provided in Section 5. Though optimal soft-threshold shrinkage is
given as an illustrative example in this paper (“SkellamShrink”), the
reader is reminded that risk estimate results apply to any Haar-based
Poisson intensity estimation methods.

2. WAVELET AND FILTERBANK COEFFICIENT MODELS

2.1. Haar wavelet and filterbank transforms

Below, we review the requisite notions of discrete wavelet and filter-
bank transforms—complete details can be found in [22]. In the Haar
transform, the sequence {fj} ∈ �2(Z) is represented in terms of a
recursive relationship as follows:

{
sk,i = sk−1,2i + sk−1,2i+1

xk,i = sk−1,2i − sk−1,2i+1,
(1)
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where s0,i := fi. In the formulation of (1), each sequence {sk−1,i}i

is decomposed into low-pass and high-pass components {sk,i, xk,i}i

in turn. A recursive application of the map {sk−1,i} �→ {sk,i, xk,i}
yields the Haar wavelet transform (HWT), whereas the same trans-
form applied to high-pass component xk−1,i further decomposes
it into narrower bands. Recursive decomposition of both low-pass
and high-pass sequences in this way yields the Hadamard transform,
otherwise known as the Haar filterbank transform (HFT). The com-
putational requirements of these transforms makes them attractive
alternatives to other joint time-frequency analysis techniques pos-
sessing better frequency localization. The Haar transforms enjoy or-
thonormality, compact spatial support, and computational simplicity,
with the HWT satisfying the axioms of a multiresolution analysis.
We later demonstrate how their simplicity serves to admit analyti-
cal tractability that in turn enables efficient inference and estimation
procedures.

We omit subband index k in the sequel, as wavelet coefficients
xk,i are always aggregated within a given scale 2k. Notation such as∑

i xi refers to summation over i within a single subband.

2.2. The Skellam distribution

Let W ∈ {0,±1}N×N denote the HWT or HFT matrix as spec-
ified in Section 2, where components of x := Wf are sums and
differences of elements of f . To this end, define xi = x+

i − x−i :

x+
i =

∑
j:[W ]i,j=1

fj , x−i =
∑

j:[W ]i,j=−1

fj . (2)

Defined similarly with respect to the observed data gi ∼ P(fi) and
its transform y := Wg, each observed transform coefficient yi =
y+

i − y−i is a difference of two independent Poisson counts

y+
i ∼ P(x+

i ), y−i ∼ P(x−i ),

taking the so-called Skellam distribution [17] with parameters x+
i , x−i ;

Pr(Yi = yi; x
+
i , x−i ) = e−(x+

i +x−i )
∑

n≥max(0,−yi)

(x+
i )yi+n(x−i )n

(yi + n)!n!

= e−(x+
i +x−i )

(
x+

i

x−i

) yi
2

Iyi

(
2

√
x+

i x−i

)
,

with Iyi(·) the yith-order modified Bessel function of the first kind.
Defining the scaling coefficient si = x+

i + x−i , we may write the
Skellam likelihood in terms of transform coefficients as follows:

φ(yi; xi, si) := Pr(Yi = yi; xi, si)

=e−si

(
si + xi

si − xi

)yi
2

Iyi

(√
s2

i − x2
i

)
, (3)

where the above is undefined if |xi| ≥ si. Figure 1 confirms that
φ(yi; xi, si) tends toward a Normal as si increases.

Defining the scaling coefficient ti = y+
i +y−i , where ti∼P(si),

we observe the following properties of Skellam random variables.

Lemma 2.1. Let yi∼ Skellam(xi, si), with xi and si unknown, and
ti = y+

i + y−i as defined above. Then we have that

E Yi = xi

E(Yi − xi)
2 = si

E[Ti ± Yi|Yi = yi] = (si ± xi)
φ(yi ∓ 1; xi, si)

φ(yi; xi, si)
. (4)

Proof. See Appendix A.

Fig. 1. Illustrations of Skellam probability mass functions

3. RISK ESTIMATES FOR SHRINKAGE OPERATORS

The main conclusion of Section 2 is that the observed wavelet or
filterbank coefficient yi corresponding to the “Poisson-corrupted”
vector-valued data is the “Skellam-corrupted” version of an ideal co-
efficient xi. Thus the Poisson intensity estimation problem is equiv-
alent to estimating the Skellam mean in the transform domain. The
main result of this section is the following theorem, which yields a
procedure for unbiased �2 risk estimation in the context of shrinkage
operators. An example using soft-threshold operator follows.

Theorem 3.1. Let yi∼ Skellam(xi, si), with xi, si unknown, and
ti = y+

i +y−i . Fix an estimator x̂(Y ) = Y +θ(Y ) where θ : Z
N →

R. Then the resultant risk E ‖x̂(Y ) − x‖2
2 may be formulated as

E[‖T‖1+‖θ(Y )‖2
2+2Y T θ(Y )-(T+Y )T θ(Y -�1)+(T -Y )T θ(Y +�1)],

where �1 = [1, . . . , 1]T , with

R(y) =‖t‖1+‖θ(y)‖2
2+2yT θ(y)−(t+y)Tθ(y-�1)+(t-y)Tθ(y+�1)

an unbiased estimate thereof.

Proof. See Appendix A.

Estimators of any parametric form may be optimized by evaluating
the above expectation over the observed vectors y and t. For exam-
ple, let x̂(Y ; τ) denote a soft-thresholding operator [23]:

x̂i(Yi; τ) := sgn(Yi)(|Yi| − τ)+. (5)

Writing x̂(Y ) = Y + θ(Y ; τ), we have:

θ(Yi; τ) =

{
− sgn(Yi) τ if |Yi| ≥ τ

−Yi if |Yi| < τ .
(6)

The optimal threshold for the shrinkage estimator of this form is the
minimizer of the “SkellamShrink” risk estimate∑

i

sgn(|yi| − τ)ti +
∑

i

min(y2
i , τ2) − τ#{i : |yi| = τ}. (7)

This estimate is derived from Theorem 3.1 by evaluating the risk
with respect to (6) under three separate scenarios:

• Suppose |Yi| < τ . Then

R(yi; τ) = ti + y2
i − 2y2

i − (ti+yi)(-yi+1) + (ti-yi)(-yi-1)

= −ti + y2
i ; (8)
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• Suppose |Yi| > τ . Then

R(yi; τ) = ti + τ2 − [2yi + (ti+yi) − (ti-yi)](sgn(yi)τ)

= ti + τ2
; (9)

• Suppose |Yi| = τ . Then (e.g., for Yi = τ )

R(yi; τ) = ti + τ2 − 2τ2 + (ti + τ)(τ − 1) − (ti − τ)τ

= τ2 − τ . (10)

The risk estimate of (7) then follows from combining (8)–(10).

4. EXPERIMENTAL RESULTS

A variety of previous Poisson intensity estimation methods have
been evaluated using a standard set one-dimensional wavelet test
functions—intended to cover a wide range of signal classes and ap-
plications, including image signals, network traffic data, and Gamma-
ray burst. One hundred realizations of Poisson counts gi ∼ P(fi)
were generated synthetically, and reconstruction errors are reported
in Figure 2 for SkellamShrink, the Poisson-adjusted thresholding
methods in [9, 11] ( [10] behaves similarly to [11]), and the com-
bination of variance stabilization and SUREShrink [4,23]. For a full
comparison of these approaches in the Poisson setting to other meth-
ods, the reader is referred to [24]. All methods were implemented
using a five-level translation-invariant wavelet decomposition.

As can be seen from Figure 2, SkellamShrink measures well
against all alternatives despite the diversity in the underlying test
functions considered. Overall, performance is comparable to the
soft-thresholding method in [9]—the best among these alternatives.
Indeed, SkellamShrink consistently outperformed the combination
of variance stabilization and SUREShrink, despite the similarities in
estimator structure and formulation described below.

5. RELATION OF SKELLAMSHRINK TO SURESHRINK

The risk estimate of Theorem 3.1 is remarkably similar to the that of
the SUREShrink approach [23] derived in the additive white Gaus-
sian noise setting:∑

i

sgn(|yi| − τ)σ2 +
∑

i

min(y2
i , τ2). (11)

Interpreting Ti in Theorem 3.1 as a proxy for the variance of yi—
analogous to σ2—connections to the additive white Gaussian noise
regime are obvious. However, it follows that the risk estimate equiv-

alent to Theorem 3.1 after scaling yi by t
−1/2
i —a proxy for the stan-

dard deviation of yi [8]—is∑
i

sgn(|yi| − τ) +
∑

i

min

(
y2

i

ti
,
τ2

ti

)
− τ√

ti

#{i : |yi| = τ},

where y2
i /ti represents the stabilized variance. The most significant

difference between this risk and (11) is the appearance of τ2/ti in
the second term, pointing to the fact that “optimality” in Haar-Fisz
variance stabilization domain can be a poor approximation.

In summary, we have presented here a technique for Poisson in-
tensity estimation using the Skellam distribution in conjunction with
Haar wavelet/filterbank transforms. We derived a means to estimat-
ing the risk of any Skellam mean estimator under shrinkage rules
and frequentist model. Application of the proposed method to a soft-
thresholding operator confirms that this approach offers robust alter-
native to existing methods with a substantial improvement in some
cases.

A. PROOFS OF THE LEMMA AND THE THEOREM

Proof of Lemma 2.1. The first two properties are obvious; to obtain
the third property of (4) we apply Bayes’ rule as follows:

E[Ti ± Yi|Yi = yi] =
∑

ti∈2Z++|yi|
(ti ± yi)p(ti|yi, xi, si)

=
∑

ti∈2Z++|yi|
(ti ± yi)

p(ti, yi; xi, si)

φ(yi; xi, si)

=2φ(yi; xi, si)
−1

∑
ti>0

e−si( si±xi
2

)ti+
|yi|±yi

2 ( si∓xi
2

)ti+
|yi|∓yi

2

(ti + |yi|±yi
2

− 1)!(ti + |yi|∓yi
2

)!
.

If |yi| ∓ yi = 0, then by definition of the Skellam distribution,

2φ(yi; xi, si)
−1

∑
ti>0

e−si( s±xi
2

)ti±yi( si∓xi
2

)ti

(ti ± yi − 1)!ti!

= (si ± xi)
φ(±yi − 1| ± xi, si)

φ(yi; xi, si)
= (si ± xi)

φ(yi ∓ 1; xi, si)

φ(yi; xi, si)
.

The same conclusion holds for the case |yi| ± yi = 0.

Proof of Theorem 3.1. Rewriting the �2 risk, we obtain

E ‖Y − x‖2
2 + 2 E(Y − x)T θ(Y ) + E ‖θ(Y )‖2

2.

We substitute E(Yi−xi)
2 = si = E Ti from Lemma 2.1 and expand

the second term as follows:

E

[
E[(Yi − xi)

T θ(Yi)|Yi]
]
=E

[
E[Yi − si+xi

2
+

si-xi

2
|Yi]

T θ(Yi)
]

= E

[
Y T

i θ(Yi) − (Yi + Ti)
T

2
θ(Yi −�1) +

(Yi − Ti)
T

2
θ(Yi +�1)

]
,

by way of the following equality, based on (4):

E

[
E[(Yi±Ti)

Tθ(Yi∓�1)|Yi]
]
=E

[
(si±xi)

φ(yi∓�1; xi, si)

φ(yi; xi, si)
θ(Yi∓�1)

]

=
∑
yi

[
(si ± xi)

φ(yi ∓�1; xi, si)

φ(yi; xi, si)
θ(Yi ∓�1)

]
φ(yi; xi, si)

=
∑
yi

[
(si ± xi)φ(yi ∓�1; xi, si)θ(Yi ∓�1)

]
=E[(si ± xi)θ(Yi)].
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