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ABSTRACT
For the first time, a proof of the sifting process (SP) and

so the empirical mode decomposition (EMD), is given. For

doing this, lower and upper envelopes are modeled in a

more convenient way that helps us prove the convergence of

the SP towards a solution of a partial differential equation

(PDE). We also prove that such a PDE has a unique solution,

which ensures the uniqueness of the EMD decomposition.

The new formulation of envelopes has another benefit. In

fact, it removes interpolation problems and related issues.

Not only helps the modelization of envelopes to give a

mathematical framework on the EMD, but also, as confirmed

by the numerical simulations, the PDE-based EMD improves

a lot the classical EMD.
Index Terms—Eigenfunctions, eigenvalues, partial differen-

tial equations, spectral analysis.

I. INTRODUCTION

The Empirical mode decomposition (EMD) was intro-

duced by Huang et al. [1] for analyzing linear and non-

stationary time series. Any given signal is then decomposed

by the EMD into a sum of intrinsic mode functions (IMFs),

which are generated at each scale going from fine to coarse,

by an iterative procedure, the sifting process (SP). Many

numerical simulations have been done for a better under-

standing of the EMD behaviors [2], [3]. The crucial part in

the EMD is the SP. It is during this step that the oscillatory

functions of the signal, the so-called IMFs, are extracted.

A lack of a theoretical background is one of the weaknesses

of the EMD algorithm. What makes the SP hard to study is

the definition of the so-called local mean. Indeed, it involves

the upper and lower envelopes of the signal, which are not

easy to handle for calculus whatever the interpolations one

could use. One important thing to keep in mind is that

interpolation always creates additional information that has

nothing to deal with the original data.

The main scope of this work is to provide a theoretical

framework on the EMD for a better understanding of the

method, and then, to definitely get rid of its main criticism.

This will be essentially done by slightly changing the

definition of the local mean by modeling lower and upper

envelopes in more suitable and explicit forms.

In the next section, we make a brief survey on mathematical

works on EMD. EMD principles are recalled in section 3.

The convergence of the SP and the PDE characterization of

IMFs are done in section 4. Numerical results are shown in

section 5.

II. EMD RELATED WORKS
Many studies have recently been done on the comprehen-

sion of the EMD. A quadratic programming is proposed in

[4] as another way in computing the local mean. In [5], the

SP is replaced by a fourth order PDE without any mathe-

matical proof. This approach is validated by some numerical

simulations. A consistent study on the IMFs is proposed in

[6], [7]. However, a mathematical characterization of relaxed

IMFs is given independently to the SP. We point out that in

neither the works cited above, the information given by SP

is taken into account.

III. EMD PRINCIPLES
Following Huang et al. [1], for a given signal denoted by

S(x), the EMD algorithm could be summarized as follows:

1) Find all the extrema of S(x).
2) Interpolate the maxima of S(x) (resp. the minima of

S(x)), denoted by Emax(x) (resp. Emin(x)).
3) Compute the local mean:

m(x) =
1
2
(Emax(x) + Emin(x)). (1)

4) Extract the detail d(x) = S(x)−m(x).
5) Iterate on m(x).

Thus, any signal S(x) will be decomposed by the EMD

in the following way: S(x) =
∑N

k=1 fk(x) + r(x), where

fk denotes the kth IMF, and r(x) is the residual. A good

review of the EMD process and some implementations can

be found in [1], [8]. Two conditions should be fulfilled to

get an IMF: (C1): its local mean must be equal to zero,

and (C2): its number of extrema and zero crossings must

either be equal, or differ at most by one. (C1) modifies the

global requirement to a local one, and is necessary to ensure

that the instantaneous frequency (IF) will not include un-

wanted fluctuations induced by asymmetric waveforms. (C2)
is similar to the traditional narrow-band requirement. The

above conditions satisfy the physically necessary conditions

to define a meaningful IF. The problem with (C1) is that it

makes the SP dependent on the types of the interpolants (e.g.
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splines) used to build the envelopes. The new formulation

of the local mean will resolve the problem.

IV. A MATHEMATICAL CHARACTERIZATION OF
IMFS

Let S be a continuous signal defined in Ω. We assume

that Ω is an open bounded set of R. The whole SP is fully

determined by the sequence (hn)n∈N defined by:{
hn+1=hn − 1

2 (ĥn + ȟn)
h0 = S.

(2)

where ĥn (resp. ȟn) denotes the continuous interpolate of

the maxima (resp. minima) of hn. Let Φ be the operator

such that: ∀n ∈ N, Φ(hn) = 1
2 (ĥn + ȟn). Let fn be the

application such that: f0 = Id, Id is the identity operator;

and fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

. Then, ∀n ∈ N, we have hn =

(Id − Φ)nh0. Let Ψ = Id − Φ, then hn = Ψnh0, ∀n ∈ N.

What we aim is to study the convergence of the sequence

(hn)n∈N. To do so, we introduce two operators that will act

similarly like the upper and lower envelopes. Let δ > 0. Let

h be a real valued function defined ∀x ∈ Ω as:

Sδh(x) = sup
|y|<δ

h(x + y),

δ chosen such that x + y ∈ Ω.

Theorem 1: Let h ∈ C2(Ω). For δ > 0 small, we have

the asymptotic development of Sδ:

Sδh(x) = h(x) + sup
|z|≤1

Fδ(z) + o(δ2) (3)

∀x ∈ Ω, where Fδ(z) = δzh′(x) +
δ2

2
z2h′′(x). The values

of sup|z|≤1 Fδ(z) are given in case 1, case 2 and case 3

below.

Proof: Let x ∈ Ω and let z ∈ Ω such that |z| < 1 and

x + δz ∈ Ω. Because h ∈ C2(Ω), we write:

h(x + δz) = h(x) + δzh′(x) +
δ2

2
z2h′′(x) + o(δ2),

for a small δ. Let ε > 0. Thus:

−εδ2+h(x)+ sup
|z|≤1

Fδ(z) ≤ Sδh(x) ≤ sup
|z|≤1

Fδ(z)+h(x)+εδ2.

x and ε are chosen arbitrary; thus, ∀x ∈ Ω, we have:

Sδh(x) = h(x) + sup
|z|≤1

Fδ(z) + o(δ2).

An extremum of Fδ is obtained ⇔ z = z0 = − 1
δ

h′(x)
h′′ .

|z0 ≤ 1| ⇔ |h′(x)| ≤ δ|h′′(x)|. We have Fδ(z0) =

−1
2

h′(x)
h′′(x)

, Fδ(1) = δh′(x) +
δ2

2
h′′(x) and Fδ(−1) =

−δh′(x) +
δ2

2
h′′(x). So:

• Fδ(1) > Fδ(−1), if h is strictly increasing,

• Fδ(−1) > Fδ(1), if h is strictly decreasing.

Taking into account these facts, we have three cases:

• case 1: h is strictly increasing such that:

– h′ > δ|h′′|, or

– h′′ �= 0, h′ ≤ δ|h′′| and 0 < δh′− 1
2

h′

h′′ −
δ2

2
h′′ <

2δh′; or

– h′′ �= 0, h′ ≤ δ|h′′| and −δh′+
1
2

h′

h′′ +
δ2

2
h′′ > 0.

Then:

sup
|z|≤1

Fδ(z) = δh′ +
δ2

2
h′′. (4)

• case 2: h is strictly decreasing such that:

– |h′| > δ|h′′|, or

– h′′ �= 0, |h′| ≤ δ|h′′| and 2δh′ < δh′ − 1
2

h′

h′′ −
δ2

2
h′′ < 0; or

– h′′ �= 0, |h′| ≤ δ|h′′| and δh′ +
1
2

h′

h′′ +
δ2

2
h′′ > 0.

Then:

sup
|z|≤1

Fδ(z) = −δh′ +
δ2

2
h′′. (5)

• case 3: h′′ �= 0, δh′ +
1
2

h′

h′′ +
δ2

2
h′′ < 0 and − δh′ +

1
2

h′

h′′ +
δ2

2
h′′ < 0. Then:

sup
|z|≤1

Fδ(z) = −1
2

h′(x)
h′′(x)

. (6)

In the same manner, we define now:

Iδh(x) = inf
|y|<δ

h(x + y),

Theorem 2: Let h ∈ C2(Ω). For δ > 0 small, we have

the asymptotic development of Iδ:

Iδh(x) = h(x) + inf
|z|≤1

Fδ(z) + o(δ2) (7)

∀x ∈ Ω, where Fδ(z) = δzh′(x) +
δ2

2
z2h′′(x). The values

of inf |z|≤1 Fδ(z) are given in case 1′, case 2′ and case 3′

below.

Proof: Based on Proof 2, we can write:

−εδ2+h(x)+ inf
|z|≤1

Fδ(z) ≤ Iδh(x) ≤ inf
|z|1

Fδ(z)+h(x)+εδ2

It follows that: ∀x ∈ Ω

Iδh(x) = h(x) + inf
|z|≤1

Fδ(z) + o(δ2).

• case 1′:
– h is strictly increasing such that: h′ > δ|h′′|, or

– h is strictly increasing such that: h′′ �= 0, h′ ≤
δ|h′′| and 0 < δh′ − 1

2
h′

h′′ −
δ2

2
h′′ < 2δh′; or
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– h is strictly decreasing such that: h′′ �= 0, h′ ≤
δ|h′′| and − δh′ +

1
2

h′

h′′ +
δ2

2
h′′ > 0.

Then:

inf
|z|≤1

Fδ(z) = −δh′ +
δ2

2
h′′.

• case 2′:
– h is strictly decreasing such that: |h′| > δ|h′′|, or

– h is strictly decreasing such that: h′′ �= 0, |h′| ≤
δ|h′′| and 2δh′ < δh′ − 1

2
h′

h′′ −
δ2

2
h′′ < 0; or

– h is strictly increasing such that: h′′ �= 0, |h′| ≤
δ|h′′| and δh′ +

1
2

h′

h′′ +
δ2

2
h′′ < 0.

Then:

inf
|z|≤1

Fδ(z) = δh′ +
δ2

2
h′′.

• case 3′: h′′ �= 0, δh′ +
1
2

h′

h′′ +
δ2

2
h′′ > 0 and − δh′ +

1
2

h′

h′′ +
δ2

2
h′′ > 0. Then:

inf
|z|≤1

Fδ(z) = −1
2

h′(x)
h′′(x)

.

We finally define the operator mδ as follow:

mδh(x) =
1
2

(Sδh(x) + Iδh(x)) , ∀x ∈ Ω. (8)

mδ will replace the local mean formulated in (1). The first

main result of the paper is stated as follow:

Theorem 3: Let h ∈ C2(Ω). Under conditions given in

case 1′′ and case 2′′, and for δ > 0 small, ∀x ∈ Ω the

asymptotic development of mδ is:

mδh(x) = h(x) +
δ2

2
h′′(x). (9)

Proof: Let x ∈ Ω. Thanks to Theorems 1 and 2, we

have:

• case 1′′: h is strictly increasing such that:

– h′ > δ|h′′|, or

– h′′ �= 0, h′ ≤ δ|h′′| and 0 < δh′− 1
2

h′

h′′ −
δ2

2
h′′ <

2δh′.

Then: mδh(x) = h(x) +
δ2

2
h′′(x) + o(δ2).

• case 2′′: h is strictly decreasing such that:

– |h′| > δ|h′′|, or

– h′′ �= 0, |h′| ≤ δ|h′′| and 2δh′ < δh′ − 1
2

h′

h′′ −
δ2

2
h′′ < 0.

Then: mδh(x) = h(x) +
δ2

2
h′′(x) + o(δ2).

In either case, we have the same result. Thus, for a small δ >

0 and ∀x ∈ Ω, we have: mδh(x) = h(x)+
δ2

2
h′′(x)+o(δ2).

Next is the main result of the paper:

Theorem 4: For a small δ > 0, the SP is performed by

a parabolic PDE. Then, IMFs are the solutions of the PDE:⎧⎨
⎩

∂h

∂t
+

1
δ2

h +
1
2

∂2h

∂x2
= o(1)

h(x, 0) =S(x), ∀x ∈ Ω.
Proof: Let x ∈ Ω. Rewriting (2) by considering (8) as

the mean, gives: {
hn+1=(Id −mδ)hn

h0 = S, ∀x ∈ Ω.
(10)

Let τ > 0, τ small. Let’s now consider the function:{
h : Ω× R+ −→ R

(x, t) 	→ h(x, t)

We define: h(x, nτ) = hn(x), ∀x ∈ Ω. Using Taylor

expansion for t and thanks to Theorem 3, (10) yields:

hn+1(x) = −δ2

2
h′′(x) + o(δ2)

= h(x, nτ + τ) = h(x, nτ) + τ
∂h

∂t
(x, nτ) + o(τ2)

So, for τ = δ2, we have:
∂h

∂t
= − 1

δ2
h − 1

2
∂2h

∂x2
+

o(1). Thus, an IMF is the solution of the parabolic PDE:⎧⎨
⎩

∂h

∂t
+

1
δ2

h +
1
2

∂2h

∂x2
= o(1)

h(x, 0) =S(x), ∀x ∈ Ω.
Remark 1: In practice, we resolve:

⎧⎨
⎩

∂h

∂t
+

1
δ2

h +
1
2

∂2h

∂x2
= 0

h(x, 0) =S(x), ∀x ∈ Ω.
(11)

Definition 1: h is a δ-IMF if h is a solution of (11) and,

for an adequate T , h(., T ) is a null mean function.

Remark 2: δ-IMFs are extracted with errors of order o(1),
which is relatively small.

Remark 3: Once a δ-IMF is extracted through (11), we

resolve again (11) with the residual between the signal and

that extracted δ-IMF as for initial condition, and so on.

Finally, the original signal is decomposed into sum of IMFs.

The following last theorem proves the existence and

uniqueness of the solution of (11):

Theorem 5: Let h ∈ C2(Ω). If h is a bandlimited func-

tion, then (11) has a unique solution.

Proof: Let (uj)j∈N and (λj)j∈N be respectively se-

quences of eigen functions and eigen values of the Lapla-

cian operator, associated with Dirichlet conditions. So,

∀j ∈ N:

{
u′′

j + λjuj= 0 in Ω
uj =0 in ∂Ω.

. Multiplying (11) by

uj and taking the integral, yields:
∫
Ω
(uj

∂h

∂t
+ uj

1
δ2

h +

uj
1
2

∂2h

∂x2
)dx = 0. Let aj =

∫
Ω

ujh dx. Thus: aj =
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Fig. 1. IMFs vs δ-IMFs: first modes (a). second modes (b).

exp
(
−(

1
δ2
− λj

2
)t

) ∫
Ω

h0ujdx. Since {(uj)j∈N} is an or-

thonormal basis in L2(Ω) [9], then h is uniquely written:

h =
∑

j∈N
≺ h, uj � uj , where ≺· , · � is the inner

product in L2(Ω). Suppose that there exists j0 ∈ N such

that ∀j > j0
1
δ2
− λj

2
> 0. So, λj <

2
δ2

. This is impos-

sible, because (λj)j∈N is positive, increasing and converges

towards +∞ [9]. Because h is bandlimited i.e ∃j0 ∈ N

such that ∀j > j0 aj = 0, then h is well defined such as:

h =
∑

j≤j0
exp

(
−(

1
δ2
− λj

2
)t

)
uj

∫
Ω

h0ujdx.

V. NUMERICAL RESULTS
Presented results are obtained by implementating equation

(11) with an explicit scheme. To better show the relevance

and performances of the proposed PDE-based EMD, we

compare δ-IMFs to classical IMFs, which are extracted with

codes given in [10]. Let’s first consider: s(x) = s1(x) +
s2(x); s1(x) = 2 sin(20π x), s2(x) = 3 sin(2π x). The

signal’s components are very well separated by our approach

(Fig. 1). δ-IMFs 1 and 2 fit exactly s1 and s2 respectively

(Figs. 1-(a) and 1-(b)). On the other hand, IMF 1 is almost

the same as s1, expect at the boundaries where we see some

little differences (Fig. 1-(a)). IMF 2 totally differs from s2

(Fig. 1-(b)). Probable reasons for that are the well known

boundary problems during the SP. Boundary problems are

due to the mean envelopes’ estimations by interpolations

(splines for examples). δ-IMFs are obtained with Neumann

boundary conditions.

The second example is the same as the one considered

in [11], and for which authors used a bandwidth criterion

for a correct EMD decomposition: s = s1 + s2; s1(x) =
4 sin(20πx) sin(0.2πx), s2(x) = sin(10πx). Despite some

attenuation on δ-IMF 2 (Fig. 2-(b)), Fig. 2 clearly illustrates

the relevance and efficiency of this new formulation of the

SP. For this second example, δ-IMFs are obtained with

Dirichlet boundary conditions.

VI. CONCLUSION
We give here some major theoretical contributions on

the comprehension of the EMD. Indeed, we prove the SP’s

convergence towards a solution of a PDE. We also prove

that the PDE’s solution is a unique, which guarantees the
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Fig. 2. IMFs vs δ-IMFs: first modes (a). second modes (b).

uniqueness of the EMD decomposition. A mathematical

characterization of basic modes is then brought out with δ-

IMFs. Envelopes’ interpolations problems and related issues

are now eliminated, and as shown by our numerical results,

the PDE-based EMD improves a lot the classical EMD.
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