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ABSTRACT

In this paper, we study the problem of recognizing an un-

known probability density function from one of its sample

which is of interest in signal and image processing or telecom-

munication applications. By opposition with the classical

Kolmogorov-Smirnov method based on empirical cumulative

functions, we consider histogram estimators of the density

itself built from our data. Those histograms are generated via

model selection, more specifically via a codelength-based In-

formation Criterion. From the histograms, we may compute

a Kullback-Leibler distance to any theoretical law which is

used to complete the recognition. We apply this histogram-

based method for law recognition in a theoretical setup where

the true density is known as well as in a real setup where data

come from radio channel propagation experimentation.

Index Terms— HF radio propagation, probabilty, infor-

mation criteria, histograms, law recognition

1. INTRODUCTION

Law recognition is a problem of great interest in various

domains such as image processing, shape recognition or

telecommunication applications. The most widely used tool

to solve this problem is the Kolmogorov-Smirnov (KS) test

that will be more precisely presented in the sequel. This test

is based on a data-based estimation of the cumulative func-

tion of our unknown density. Here, we choose to estimate the

density itself by a histogram. This estimation of the density

will allow computation of Kullback-Leibler type distance on

which the law recognition will be based.

In order to estimate the unknown density by a histogram,

one needs to use non-parametrical model selection. More pre-

cisely Information Criteria (IC), also called penalized likeli-

hood criteria, will be used. Birgé [1] and Birgé and Al. [2]

address this problem in recent works. The authors suggest

to use an IC in order to determine from the data which his-

togram is the most suitable for the estimation. The justifica-

tion of the use of such a criterion is based on the minimization

of the risk of the resulting estimation. From another point of

view, Rissanen develops in [3] the notion of Minimum De-

scription Length (MDL) and in [4], that of stochastic com-

plexity, strongly related to the theory of coding as expressed

in [5]. From those notions, one may, as in [6], construct an IC

suitable for our present concern of histogram selection. The

use of that latter criterion is thus justified via coding argu-

ments rather than risk-minimizing arguments as were former

criteria from Birgé and Al. [1, 2].

In [5], we worked in the continuity of Rissanen and Al. [6]

by developping a two-steps coding technique of our data from

which is derived a codelength-based Information Criterion.

Both notions and their connections are described in section

2. This criterion allows to select, from the data, a histogram

estimating the unknown density. In section 3, we present the

method of law recognition based on the previous histogram

and on Kullback-Leibler distance. We also recall the classical

Kolmogorov-Smirnov method of law recognition. Part 4 and

5 are dedicated to applications in theoretical and experimental

backgrounds.

2. THE HISTOGRAM SELECTION CRITERION

The main setup is as follows : f is an unknown density de-

fined on an interval I = [a, b] of R and xn = x1, . . . , xn is a

sample from f . Given P = (Ij)j=1,...,m a partition of I into

m intervals, one constructs a histogram estimator of f by

f̂P =
m∑

j=1

nj

nLj

�
Ij

,

where
�

X denotes the indicator function of a set X , nj the

number of data xi falling into Ij and Lj the length of Ij . The

main problem of histogram selection is to determine which

partition P is to be chosen in order to estimate f by f̂P .

For the sake of simplicity, we choose r > 0 a precision,

usually small, and denote by Pmax the partition of I consisting

of R intervals all with length r. Then we restrict ourselves

to the 2R−1 partitions which intervals are unions of adjacent
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intervals of Pmax. Those are called sub-partitions of Pmax and

their set is denoted by SP . Note that this restriction allows to

handle the case where data live in a discrete space.

Previous work [5] allows to design an IC derived from a

data-coding technique answering the partition selection prob-

lem. Here, we present the coding technique and the IC result-

ing in our setting.

2.1. Two steps coding

The main idea is to choose a partition P ∈ SP and, with help

of it, to encode our data xn. We consider here the natural

idea of coding: transforming our data xn in a sequence of bits

that is decodable if encoder and decoder agree. Then, via the

principle of Minimum Description Length [7], the partition

to be chosen is the one that realizes the best encoding of our

datas. That encoding is now described ; it is lossless up to the

precision r and presents two steps.

2.1.1. First step : arithmetic coding

In the first step, data xn are transformed into yn as follows

yi =

m∑
j=1

j.
�

{xi∈Ij}, i = 1, . . . , n.

In other words, yi denotes the number of the interval of P in

which xi falls. In order to encode yn, we use a version of

the arithmetic coding technique presented in [5] as Predictive

Adaptive Arithmetic Coding of order 0, 0-PAAC for short. In

the sequel, L(yn|P ) denotes the length of the binary string re-

sulting from such a coding. As also discussed in the previous

reference, the PAAC is strongly related to the work of Rissa-

nen [4] in the sense that L(yn|P ) is asymptotically estimated

by the so-called stochastic complexity of yn:

L(yn|P ) ≈ −
n∑

j=1

nj log
nj

n
+

m − 1

2
log(n). (1)

As m grows, that quantity tends to grow as well since encod-

ing symbols yi, that may take m different values, gets harder.

2.1.2. Second step : fixed length coding

For a fixed i = 1, . . . , n, the information yi = j alone does

not allow to recover xi. In order to do this, one needs to

precise where xi is located inside the interval Ij . Up to the

precision r, there are Lj/r real numbers in this interval. Con-

sequently, the precision of xi may be done with an encoding

of (ideal) fixed length equal to log Lj/r.

Now, the total number of bits required to precise all the

xi’s equals

L(xn|yn) =

m∑
j=1

nj log
Lj

r
. (2)

By opposition to (1), this quantity tends to decreases as m
increases. Indeed, the larger m, the smaller the intervals of

P , the easier it is to precise where each xi is.

2.1.3. The criterion

Via our two-steps encoding method, the estimated total loss-

less codelenght of the data xn with help of the partition P
writes as the sum of (1) and (2), that is

CRIT(xn, P ) = −
n∑

j=1

nj log
rnj

nLj

+
m − 1

2
log(n). (3)

This quantity enters the formalism of Information Criteria

(IC), widely used tools in model selection problem for which

one may for instance refer to [8, 9, 2].

The MDL principle thus suggests to choose P̂ as

P̂ = Argmin {CRIT(xn, P ), P ∈ SP} (4)

and consider f̂
P̂

as an estimator of the unknown density f .

Note that this minimization does not depend on the chosen

precision r.

The opposite behaviors of (1) and (2) described earlier re-

flect the usual fact that this minimization of the IC (3) realizes

the best compromise between the complexity of the partition

and how well it fits the data.

The resulting histogram is referred to in the sequel as dy-

namic histogram. This word is inherited from the dynamic

programming method introduced by Rissanen [6] that allows

to determine P̂ in (4) in a number of operations of the or-

der R2 instead of having to compute the 2R−1 values of the

criterion for each P ∈ SP . We may also restrict ourselves

to the class of regular histograms on I . Those are built on

partitions Pm that have m intervals all of length (b − a)/m
for m = 1, . . . , M . In this case, the resulting estimation is

referred to as regular histogram. We use the term optimal

histograms to refer to either dynamic or regular ones, by op-

position to the empirical histogram described in part 3.2.

3. METHODS

Let F be a family of density functions on I ; they are the laws

in competition.

3.1. Optimal histogram method

Once the optimal histogram estimator f̂ is selected via (3) and

(4), we may compute the Kullback-Leibler distance from it to

any f ∈ F as follows :

KL(f̂ , f) =
1

2

∫
I

(f̂ − f) log
f̂

f
dμ. (5)

Then, the law recognition is done via

fKL,opt = Argmin(KL(f̂ , f), f ∈ F). (6)
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3.2. Empirical histogram method

From our set of data xn, it is usual to build an empirical

histogram describing the distribution. Classically this his-

togram f̂emp is built on the regular partition of I that counts

�2√n − 1� intervals where �.� denotes the inferior integer

part. From it, one may solve the law recognition problem by

fKL,emp = Argmin(KL(f̂emp, f), f ∈ F). (7)

3.3. Kolmogorov-Smirnov method

The Kolmogorov-Smirnov (KS) method is the tool used clas-

sically for law recognition. From the data xn, we construct

the empirical cumulative function denoted by F̂ . Let us de-

note by Fc the set of cumulative functions of the laws f ∈ F .

The KS distance between F̂ and F ∈ Fc is

KS(F̂ , F ) = sup
t∈I

∣∣∣F̂ (t) − F (t)
∣∣∣ . (8)

From that distance, the law recognition is done via

FKS = Argmin(KS(F̂ , F ), F ∈ Fc). (9)

This method does not require to estimate the density itself.

3.4. The model

It contains three densities defined for x ≥ 0 :

Rayleigh : fR(x) =
x

σ2
exp

(
− x2

2σ2

)

Nakagami : fN (x) =
2μμx2μ−1

(μ − 1)!Ωμ
exp

(
−μx2

Ω

)
(10)

Weibull : fW (x) =
kxk−1

λk
exp

(
−xk

λk

)

This choice of model is usually done for radio channel prop-

agation modelization. All coefficients σ, μ,Ω, k, λ are shape

parameters to be described later. Note that choosing μ = 1
and k = 2 in Nakagami and Weibull laws make them similar

to a Rayleigh law.

4. APPLICATION IN A THEORETICAL SETUP

Our aim in this part is to show that the recognition method

defined in (6) is efficient and to compare it with the usual KS

method (9) and the empirical histogram method (7).

The shape parameters σ, μ,Ω, k, λ in (10) are all set to

obtain a mean of 73 and a standard deviation of 1.2, the re-

sulting values are given in Table 1(a). We generate 30 sam-

ples of sizes n ranging from 100 to 3000 of the laws in model

(10). On each of those sample, we apply the three recognition

methods discussed earlier: optimal histograms (6), empirical

histogram (7) and KS distance (9). Since the generating law

is known, we may compute successfull recognition rates (RR)

of the true family and plot them in figure 1.

We choose to show only RR of the Rayleigh law. Results

are similar for other generating distributions. We see that us-

ing optimal histograms, especially dynamic one, yields a bet-

ter RR than using the usual KS method. This is remarkable

since, in our setting, optimal histograms never contain more

than 50 bins. This means that resuming the data information

to about 50 classes allows a better recognition of the under-

lying law than conserving all the information in the n steps

of the empirical cumulative function used in the KS method.

Moreover, if one wants to avoid KS method for law recogni-

tion, optimal histograms should be used since the empirical

one gives poor results.

Fig. 1. Rayleigh RR using optimal histograms, empirical his-

togram and KS methods.

5. APPLICATION IN A REAL SETUP

Laboratory SIC-XLIM developped a software allowing to

simulate the fast fading behavior of a radio propagation chan-

nel in various environments, see [10]. From this software,

we collected n = 700 data representing the attenuation (dB)

of the signal in both Line Of Sight (LOS) and Non Line Of

Sight (NLOS) configurations, see figure 2. We choose to

modelize the radio channel by either a Rayleigh, Weibull,

or Nakagami distribution from the model (10). In order to

determine which of those laws best suits the radio channel,

we apply recognition method (6) with optimal histograms.

5.1. LOS configuration

In this experiment, the computed average attenuation and its

standard deviation are respectively 73 dB and 1.2 dB. Shape

parameters in (10) are set in consequence and shown in Ta-

ble 1(a). Here, the Weibull distribution suits the best the fast
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Fig. 2. The environment of the simulation.

fading behavior of the propagation channel in a LOS config-

uration. This is the usual conclusion as in [11].

5.2. NLOS configuration

Here, average and standard deviation equal respectively 99.8

dB and 3.5 dB. Shape parameters in (10) are set in conse-

quence and shown in Table 1(b). It is not obvious to decide

which law suits the best the data but it does not matter since

shape parameters μ ≈ 1 and k ≈ 2 for Nakagami and Weibull

laws actually correspond to a Rayleigh law. As in [12], the

Rayleigh modelization appears as the best in the NLOS con-

figuration.

�
�

�
�

�
�

��
Histo.

Law
Rayleigh Nakagami Weibull

σ = 1.58 μ = 0.68 k = 1.53
Ω = 4.99 λ = 2.05

Dynamic 0.12 0.05 0.04

Regular 0.12 0.08 0.06

(a)

�
�

�
�

�
�

��
Histo.

Law
Rayleigh Nakagami Weibull

σ = 4.09 μ = 0.99 k = 2.01
Ω = 33.43 λ = 5.79

Dynamic 0.033 0.034 0.035

Regular 0.114 0.115 0.115

(b)

Table 1. KL distances from optimal histograms to the laws in

competition in LOS(a) and NLOS(b) cases.

6. CONCLUSION

In this paper, we developped an information-theoretic criteria

(3) allowing to estimate an unknown probability law by a his-

togram. This histogram, summing our data to a few number

of parameters and used along with Kullback-Leibler distance,

is shown to allow a rate of succesfull law recognition as good

as or even better than the usual Kolmogorov-Smirnov method.

It is then applied to a realistic environment where it matches

usual results of modelization.
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