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ABSTRACT

The focus of this paper is the modeling of a class of station-

ary non-Gaussian auto-regressive processes that often find ap-

plications in statistical signal processing. We propose a gen-

eral simulation procedure for constructing a time series model

with a near-Laplace marginal distributions. Our approach is

based on a class of Monte Carlo rejection algorithms. A the-

oretical analysis of the average complexity of the proposed

algorithms for simulating the time series model is included.

Index Terms— signal modeling, time series, Monte

Carlo, rejection algorithms, Laplace distribution

1. INTRODUCTION

Simulation of correlated random processes with a given

marginal distribution is a problem frequently encountered

in signal processing studies (e.g., speech and image pro-

cessing, analysis of communication systems). Of particular

interest is the first-order stationary auto-regressive process

{Xn} of the form

Xn = ρXn−1 + εn, (1)

where |ρ| < 1 and {εn} is a sequence of i.i.d. random vari-

ables (innovation sequence). In generating {Xn}with a given

marginal distribution, we need to solve the challenging in-

verse problem of finding an appropriate distribution for the

innovation process {εn}. The only trivial case is the Gaus-

sian distribution, as it is known that if Xn ∝ N(0, v2) then

the innovation process must be also Gaussian, i.e., {εn} ∝
N(0, (1 − ρ2)v2). On the other hand, in many applications

{Xn} is required to have a Laplacian distribution. In fact,

it is well accepted that (1) closely describes speech signals

if {Xn} is distributed according to the Laplace density with

0.8 < ρ < 0.9 [1]. Previously, time series modeling with the

Laplace marginal distribution has been developed in [2]. Un-

fortunately, the resulting auto-regressive model experiences a

singular behavior as the innovation process of the model has

a non-zero probability mass at 0. Such singular behaviour

is difficult to observe in real-world data sets. In [3], a stan-
dard hyperbolic secant density has been used as a model for

the marginal density in (1), and the inverse transform method

for simulating the resulting time series model has been sug-

gested. However, the proposed formula is rather complex and

has a limited scope of applications, since often one can com-

pute the density function but not the corresponding distribu-

tion function and its inverse. Consequently, the inverse trans-

form method is rarely applicable.

In this paper, we develop an approach for generating

a process of the form (1) with a marginal density which

is very close to the Laplace density. In fact, we choose a

marginal density function that belongs to the class of gener-
alized hyperbolic secant distributions [4], which consists of

symmetric densities with exponentially decaying tails. We

propose a Monte Carlo rejection method for simulating a

process with the desired density. The method is based on

establishing bounds on the density of the innovation process.

These bounding densities are of simple form yielding effi-

cient simulation algorithms. The method can be generalized

to a larger class of densities with a limited knowledge about

their shape. We develop two versions of the rejection method.

The first one is based on some universal bounds which only

require the knowledge of the second moment of the underly-

ing density. The second rejection algorithm utilizes a bound

derived specifically for our particular class of densities. A

comparison of the efficiency two algorithms is made based

on a detailed analysis of their average time behavior.

2. BACKGROUND AND PRELIMINARIES

In order to simulate the process in (1) with a given marginal

density fX(·), we begin with simulating X0 according to

fX(·) followed by the generation of ε1 with the distribution

fε(·) from which we obtain X1. This process is then iterated

accordingly. Hence, in order to implement this simulation

procedure one needs to determine the distribution fε(·). A so-

lution to this inverse problem can be obtained in the transform

domain by establishing a relationship between characteristic

functions of {Xn} and {εn}. Let ϕX(t) = E{ejtXn} and

ϕε(t) = E{ejtεn} be the characteristics functions of {Xn}
and {εn}, respectively. Then from (1), it follows that

ϕX(t) = ϕX(ρt) ϕε(t). (2)
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Thus, for a given distribution of {Xn} we can recover the

distribution of {εn} by finding the inverse Fourier transform

of the function ϕX(t)/ϕX(ρt), provided that it defines a

proper characteristic function. If Xn has the Laplace den-

sity then the distribution of {εn} is not longer absolutely

continuous and so neither is the distribution of the bivariate

process (Xn, Xn−1) [2]. This undesirable property is shared

by other important choices for the distribution of Xn, e.g.,

exponential and gamma distributions [5]. We next establish

that if the marginal density is the generalized hyperbolic se-

cant distribution then the joint distribution of (Xn, Xn−1)
is indeed absolutely continuous. In the next section we pro-

pose Monte-Carlo rejection algorithms for constructing such

a process.

A random variable X with the generalized hyperbolic se-

cant distribution [4] is defined by the two-parameter density

fX(x; a; α) =
αc0(a)

a + eαx + e−αx
, −∞ < x <∞ (3)

where a ≥ 0, α > 0, and c0(a) is the normalizing constant.

The density fX(x; a; α) is symmetric with exponential tails,

and possesses all moments. A quick inspection of (3) reveals

that fX(x; a; α) is bounded by the Laplace density, i.e., we

have

fX(x; a; α) ≤ 2c0(a)
α

2
e−α|x|, −∞ < x <∞. (4)

A careful examination of the constant c0(a) shows that c0(a)
is the smallest for a = 0 and it is equal to c0(0) = 2/π.

Hence, one may conclude that the generalized hyperbolic se-

cant distribution with a = 0 is the most similar to the Laplace

distribution. This defines the so-called standard hyperbolic

secant density function

fX(x; α) =
2α/π

e−αx + eαx
,−∞ < x <∞. (5)

This density was also used in [3] without the above reasoning.

Fig. 1 compares the density fX(x; π/2) with the Laplace den-

sity with λ =
√

2. In this paper, we shall focus on the density

in (5), however, our approach extends readily to the density in

(3) and other more general models.

For our future developments we need to determine the

characteristic function of a random variable X with the den-

sity defined in (5). Using the identity on page 537 in [6] we

can obtain that

ϕX(t) =
(

ch

(
πt

2α

))−1

, (6)

where ch(x) = ex+e−x

2 is the hyperbolic cosine. Then, we

get that ϕε(t) = ch
(

πρt
2α

)
/ch

(
πt
2α

)
, |ρ| < 1. Next, by the re-

sult on page 539 in [6], we obtain the desired density function

of εn

fε(x) =
2α

π

cos
(

πρ
2

)
ch(αx)

cos(πρ) + ch(2αx)
. (7)
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Fig. 1. The Laplace(
√

2) density and the standard hyperbolic secant

density (thick line) with α = π/2.

3. SIMULATION ALGORITHMS

In this section we develop two rejection algorithms for simu-

lating {εn}. The first strategy relies on the universal rejection

algorithm proposed in [7]. Here we merely utilize the fact

that the density fε(x) is uni-modal and monotonic for x ≥ 0.

In the second direct rejection procedure we find explicit en-

velope densities tailored to the shape of fε(x). The rejection

strategy is much more flexible than the inverse method used

in [3] as it can be extended to other probabilistic models with

the minimal knowledge of underlying distributions [7].

3.1. Universal Rejection Method

The universal rejection algorithm can be applied to a large

class of densities since the only a priori information required

is expressed in terms of general properties of densities in the

class. This includes such properties such as smoothness, uni-

modality, monotonicity and log-concavity [7]. In particular,

we can utilize this theory by observing that the density fε(x)
in (7) is uni-modal and monotonic for x ≥ 0. Next, by using

Theorem 3.2 of Chapter 7 in [7], it can be shown that fε(x) ≤
h(x), where h(x) = min

(
fε(0), 3σ2

ε

2|x|3
)

, σ2
ε = Eε2. The area

under h(x)

A = 3
(

3
2

)1/3

(σεfε(0))2/3
(8)

gives the average number of iterations required in the rejec-

tion algorithm. The algorithm, however, requires a procedure

for generating a random variate W with the envelope den-

sity g(x) = h(x)/A. The form of g(x) allows us to apply the

concept of the ratio of uniforms. Let U, V be independent ran-

dom variables with uniform [0, 1] and uniform [−δ, δ] distri-

butions, respectively. Then, we can show (see the Appendix)

that the density of a random variable Z = V/Up, p > 0 is

given by

fZ(x) =

{
1

2(p+1)δ when |x| ≤ δ
δ1/p

2(p+1)
1

|x|1+1/p when |x| ≥ δ.
(9)
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This result can be directly applied to g(x) by noting that

g(x) = fZ(x) if we choose p = 1/2 and δ =
(

3σ2
ε

2fε(0)

)1/3

.

As a result, we obtain a very efficient method for simulating

W , i.e.,

W =
(

3
2

)1/3 (
σ2

ε

fε(0)

)1/3
V

U1/2
, (10)

where U and V are independent uniform [0, 1] and uni-

form [−1, 1] random variates, respectively. Since σ2
ε =(

π
2α

)2 (1 − ρ2) and fε(0) = 2α
π cos(πρ/2)/[1 + cos(πρ)]

therefore σ2
ε/fε(0) =

(
π
2α

)3
ψ(ρ) where ψ(ρ) = [1 +

cos(πρ)](1 − ρ2)/cos(πρ/2). We can now give the cor-

responding rejection algorithm for simulation of {εn}.

Algorithm I

Step 1. Generate three independent uniform [0, 1] random

variates U0, U1, U2.

Step 2. Set

W =
π

2α

(
3
2
ψ(ρ)

)1/3 2U1 − 1√
U2

,

Step 3. If

U0 <

{
fε(W )
fε(0) when |W | ≤ π

2α

(
3
2ψ(ρ)

)1/3

2|W |3fε(W )
3σ2

ε
when |W | > π

2α

(
3
2ψ(ρ)

)1/3

then exit with ε = W ; else go to Step 1.

The efficiency of the rejection algorithm is determined by the

acceptance probability in Step 3 [7]. In fact, the expected

number of iterations equal to the constant A in (8). Plugging

the appropriate expressions for σ2
ε and fε(0) into (8) we can

obtain the average efficiency of the universal rejection algo-

rithm as

AUR(ρ) = 3
(

3
2

)1/3 (
(1− ρ2)1/2 cos(πρ/2)

1 + cos(πρ)

)2/3

.

(11)

Note that AUR(ρ) ≥ 3(3/2)1/3 = 2.16337 . . . and it tends

to ∞ as |ρ| → 1. The latter fact is not surprising as the case

|ρ| → 1 corresponds to the non-stationary auto-regressive

process. For the practical range |ρ| ≤ 0.9 the constant

AUR(ρ) varies between 2.17 and 4.29.

3.2. Rejection Method Using Laplace Bounding Densities

We now develop a rejection algorithm that uses specific

bounds tailored to the shape of fε(x). Since fε(x) has ex-

ponentially decaying tails, it is natural to seek for a bound in

terms of a Laplace distribution. The following lemma gives

such a bound.

Lemma 3.1 For the density fε(x) in (7) we have

fε(x) ≤
{

B1(ρ)α
2 e−α|x| |ρ| ≤ 1/2

B2(ρ)α
2 e−α|x| 1/2 < |ρ| < 1,

(12)

where B1(ρ) = 8
π cos(πρ/2), B2(ρ) = 8

π
cos(πρ/2)

1−cos2(πρ) .

The proof of this inequality is given in the Appendix. The

proof of Lemma 3.1 reveals that one can obtain a tighter

bound if we use a mixture of Laplace distributions. In fact,

we have the following counterpart of (12).

fε(x) ≤
{

2
3B1(ρ)( 3

4
α
2 e−α|x| + 1

4
3α
2 e−3α|x|) |ρ| ≤ 1

2
2
3B2(ρ)( 3

4
α
2 e−α|x| + 1

4
3α
2 e−3α|x|) 1

2 < |ρ| < 1,
(13)

Hence, we have the mixture of Laplace(α) and Laplace(3α)

distributions with the mixing probabilities 3/4 and 1/4, re-

spectively.

As we have already noted the efficiency of the rejection al-

gorithm is determined by the constants B1(ρ), B2(ρ) appear-

ing in bound (12). Note that 1.8006 . . . ≤ B1(ρ) ≤ 2.546 . . .
and B2(ρ) has a minimum at ρ∗ = 0.60817 with B2(ρ∗) =
1.65397. Also B2(0.8) = 2.2776, B2(0.9) = 4.1716. We

will denote the constants B1(ρ), B2(ρ) commonly as B(ρ).
In Figure 2, we plot B(ρ) along with the constant AUR(ρ)

(see [11)] corresponding to the universal rejection algorithm.

Also the constants 2
3B(ρ) corresponding to the bound based

on the mixture of Laplace distributions are shown. It is in-

teresting to note that the universal rejection method is more

efficient than the rejection method based on the Laplace dis-

tribution for |ρ| ≤ 0.3. This fact can be easily explained

by noting that fε(x) is flat for small values of |ρ| and this

property is captured by the bounding curve h(x). However,

note that if we use the bound with the mixture of Laplace

distributions then the universal rejection algorithm is less ef-

ficient than the rejection method based on the bound in (13)

for all −1 < ρ < 1.

We are now in a position to propose the rejection algorithm

using the Laplace bounding density. An algorithm that uses

the bound based on the mixture of Laplace densities in (13)

can be derived in an analogous way. In fact, in the algo-

rithm given below, the random variate W should simulate

the mixture 3
4

α
2 e−α|x| + 1

4
3α
2 e−3α|x|. This can be easily

obtained by generating the uniform [0, 1] random variate

U3 and checking whether U3 ≤ 3/4. If this is true then

we set W = − sign(2U1 − 1) ln(U2)/α, else W = −
sign(2U1 − 1) ln(U2)/3α.

Algorithm II

Step 1. Generate three independent uniform [0, 1] random

variates U0, U1, U2.

Step 2. Set W = − sign(2U1 − 1) ln(U2)/α.
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Fig. 2. The efficiency of rejection algorithms: (a) B(ρ) (thin line) of ALGORITHM II (Laplace bound) and AUR(ρ) of ALGORITHM I (b)
2
3
B(ρ) (thin line) of ALGORITHM II (Laplace mixture bound) and the AUR(ρ) of ALGORITHM I.

Step 3. If

U0 <
fε(W )

B(ρ)α
2 e−α|W |

then exit with ε = W ; else go to Step 1.

It is worth mentioning that in Step 2 we simulate the

Laplace(α) random variate. Moreover, by noting that e−2α|W |

= U2
2 , e−4α|W | = U4

2 we can greatly simplify the ratio ap-

pearing in the acceptance decision in Step 3. As a result,

the algorithm needs only two uniform random variates and

a simple comparison step. The average number of iterations

to produce a random variate ε is shown in Figure 2(a). The

efficiency of the rejection algorithm employing the mixture

of Laplace densities is depicted in Figure 2(b).

4. APPENDIX

Proof of (9)- It is known that the density function of a random

variable X = V/U is given by

fX(x) =
∫ ∞

−∞
|t|fV U (tx, t)dt, (14)

where fV U (v, u) is the joint density function of (V,U). In

our case we have Z = V/Up, p > 0, where V is uniform

[−δ, δ], whereas U is uniform [0, 1]. Moreover, V and U are

independent random variables. Thus, the joint density func-

tion of (V, Up) is

fV Up(v, u) =
1

2pδ
u−(p−1)/p, 0 < u < 1, |v| ≤ δ.

This and a direct application of (14) yield the proof of (9)

Proof of Lemma 3.1- For x ≥ 0, fε(x) in (7) can be

written as

fε(x) = c1
e−αx + e−3αx

2c2e−2αx + e−4αx + 1
. (15)

where c1 = 2α
π cos(πρ/2), c2 = cos(πρ). Note that for |ρ| ≤

1/2, 0 ≤ c2 ≤ 1. Then, we can bound fε(x) by c1{e−αx +
e−3αx} ≤ 2c1e

−αx. A bound for fε(x) in the case of 1/2 ≤

|ρ| < 1 must be found in a different way since now −1 <
c2 ≤ 0. To do so, let d(x) = 2c2e

−2αx + e−4αx + 1. The

derivative d(1)(x) = 4α(−c2)e−2αx − 4αe−4αx is equal to

zero at x∗ = − 1
2α ln(−c2) where d(x) reaches the minimum,

as d(2)(x∗) = 8α2c2
2 > 0. Since d(x∗) = 1 − c2

2 we obtain

that, for 1/2 ≤ |ρ| < 1,

fε(x) ≤ c1

1− c2
2

{e−αx + e−3αx} ≤ 2c1

1− c2
2

e−αx.

The case x < 0 can be treated in an analogous way.
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