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ABSTRACT
Motivated by applications in multiple scattering, we study the

problem of decompounding on compact Lie groups. Employ-

ing tools from harmonic analysis, we give a nonparametric

approach to this problem. The case of the special orthogonal

group SO(3) is discussed in detail.

Index Terms— Estimation on Lie groups, compound

Poisson process, harmonic analysis, nonparametric estima-

tion

1. INTRODUCTION

Compound Poisson processes (CPP) in Lie groups directly

generalize their classical real-valued counterparts. These pro-

cesses are of current interest in mathematics [1] and certain

versions of them have found applications in multiple scatter-

ing problems, e.g. scattering of charged particles [2] and of

surface waves around the earth [3]. In this paper, we present

an estimation problem related to CPP on compact Lie groups.

This problem is known as decompounding. It is defined in

section 4, where a non parametric approach to its solution is

given. The case of decompounding on the special orthogonal

group SO(3) is studied in section 5. It is seen that this case

is of particular interest to multiple scattering problems. Nu-

merical examples of the approach of section 4 are presented

in subsection 5.4. The main mathematical tool used in the

following is harmonic analysis on compact Lie groups. Its

importance to stochastics [4, 5] and to more applied estima-

tion problems [4, 6, 7] has been noted by several authors.

2. HARMONIC ANALYSIS ON LIE GROUPS

In this section we shortly recall some facts on harmonic anal-

ysis on compact Lie groups. We refer the reader to standard
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literature on representation theory [8]. In the remainder of

this paper G will denote a compact Lie group and μ the biin-

variant Haar measure on G. L2(G, C) will denote the space

of square integrable functions with respect to μ. As a compact

Lie group, G has a countable number of equivalence classes

of irreducible complex representations which we will denote

by Irr(G). Let us fix for each δ ∈ Irr(G) an irreducible rep-

resentation U δ : G → C
dδ×dδ , and note dδ the dimension of

δ. By the Peter-Weyl theorem, any f ∈ L2(G, C) has the

so-called Fourier expansion

f(g) =
∑

δ∈Irr(G)

dδ tr(A†δU
δ(g))

with Aδ =
∫

G
f(g)U δ(g)dμ and A† the Hermitian conjugate

of A ∈ C
dδ×dδ . For a group-valued random variable X with

a probability density function (pdf) p ∈ L2(G, C) we call the

mapping φX : δ �→ Aδ , which assigns the coefficient Aδ of

the Fourier expansion of p to each irreducible representation

δ ∈ Irr(G), the characteristic function of X [4, 9]. This is a

straightforward generalization of characteristic functions for

real-valued random variable. Characteristic functions are a

significant tool for our estimation problem since they allow

us in the scalar case to transform convolutions into simple

multiplications of the (matrix) Fourier coefficients. We call

a function f ∈ L2(G, C) conjugate invariant if f(ghg−1) =
f(h) for all g, h ∈ G. For conjugate invariant functions the

Fourier expansion simplifies to

f(g) =
∑

δ∈Irr(G)

dδa
†
δχ

δ(g) (1)

where aδ = tr(Aδ)/dδ and χδ(g) = tr(U δ(g)) is the char-

acter function of the representation U δ . We call a G-valued

random variable conjugate invariant if it has a conjugate in-

variant L2(G, C) density.

3. COMPOUND POISSON PROCESSES

We will now introduce CPP on compact Lie groups. Let N(t)
be a Poisson process and (Xi)i≥1 a sequence of i.i.d. random
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variables which take values in G. We assume that N(t) and

(Xi)i≥1 are independent and that the Xi have a L2(G, C)
pdf. A compound Poisson process is defined as the random

product

Y (t) =
N(t)∏
i=1

Xi

see [4, 1]. Using the properties of characteristic functions (cf.

[1]) one derives the following formula for the characteristic

function of Y (t).

Proposition 1 Let the Poisson process N(t) have parameter
λ. The characteristic function of Y (t) is given by

φY (t)(δ) = exp (λt (φX1(δ)− Idδ
))

where exp denotes matrix exponential and Idδ
the dδ × dδ

identity matrix. If the Xi are conjugate invariant then

φY (t)(δ) = exp
(

λt

(
tr (φX1(δ))

dδ
− 1

))
Idδ

4. DECOMPOUNDING

In applications we are faced with the problem to determine

the distribution of the Xi from measurements of instances of

the process Y (t) at a fixed time T . This problem is known as

decompounding on the group G. The case of decompounding

scalar or vector-valued CPP has been considered in [10, 11].

For decompounding CPP on a compact Lie group we propose

a generalization of the approach for scalar processes in [11].

As in the scalar case we base it on inversion of the formula

for the characteristic function of Y (t).
In general, the measurements of the process Y (t) will be

corrupted by noise. To take this into account we choose a mul-

tiplicative noise model. We assume that instances Ẑ1, . . . , Ẑn

of the process Z(t) = MY (t) at the time T , where M is

an independent, G-valued random variable representing the

noise, are measured. The noise M is a Gaussian group-valued

random variable [6], i.e.

φM (δ) = exp
(
−σ2ρδ

2

)
Idδ

with σ2 the variance parameter and ρδ the eigenvalues of the

Laplace-Beltrami operator on G, see [5]. Note that the ρδ

are well-known for classical groups like SO(n). Here, we

will discuss only the case that the variance parameter σ2 of

the noise distribution is known. To simplify our calculations

we will further assume that the Xi are conjugate invariant.

Since M is also conjugate invariant, this implies that Y (t)
is conjugate invariant for all t > 0. A discussion of more

general distributions would be beyond the scope of this paper.

We first provide an estimator for the characteristic func-

tion of Y (T ). To deal with the noise we use a deconvolution

of empirical density of the Ẑi with the density of M . We mul-

tiply the empirical characteristic function 1/n
∑n

i=1 Uδ(Ẑi)
of the measurements Ẑi with the inverse of the characteris-

tic function of M . This corresponds to deconvolution ap-

proaches as introduced in [6, 7] for density estimation on

SO(n) and spheres. We get the following estimator for the

characteristic function of Y (T )

φ̂Y (T )(δ) = tr

(
1
n

n∑
i=1

φM (δ)−1Uδ(Ẑi)

)
Idδ

=

(
exp(σ2ρδ

2 )
n

n∑
i=1

tr
(
Uδ(Ẑi)

))
Idδ

The trace operator ensures that the our a priori assumption of

conjugation invariance of Y (t) is satisfied by the estimates.

For decompounding itself we invert the formula for the

characteristic function of Y (T ). Taking into account the in-

variance properties of Y (T ) yields the following equation

tr
(
φn

Xi
(δ)

)
=

1
λT

log
(
tr

(
φY (T )(δ)

))
+ 1

Note that by (1) this is sufficient to determine the conjugate

invariant density of Xi. Our estimate for tr(φY (T )(δ)) is not

necessarily a positive real number. However, since the group-

valued random variables have a L2(G, C) pdf, the estimate

for tr(φY (T )(δ)) is with probability 1 guarantueed not to be a

real, non-positive number. Hence, we can use in the formula

above the principal branch of the complex logarithm. Using

our estimate for the characteristic function of Y (T ) we get

the following estimator for the characteristic function of Xi

φ̂n
Xi

(δ) =(
1

λT
log

(
1
n

n∑
i=1

tr
(
Uδ(Zi)

))
+

σ2ρδ

2λT
+ 1

)
Idδ

(2)

To obtain an estimate for the density itself we use (1) to get

pn
S(g) =

∑
δ∈S

dδ tr
(
φ̂n

X1
(δ)

)
χδ(g) (3)

where S is any finite subset of Irr(G). While the estimates

are not real-valued functions, they converge to the pdf of the

Xi. If a real-valued estimate is required, one can use the real

part of pn
S ; the convergence properties of this estimate are the

same as for the complex estimates.

Theorem 1 Let Sm be an increasing sequence in Irr(G) such
that

⋃∞
m=1 Sm = Irr(G). For n,m → ∞ the random func-

tions pn
Sm

(g), (3), converge to the density of the Xi.

Here, convergence means the convergence in probability of

the L2(G, C) deviation between estimated and original den-

sities. Due to constraints on the size of this paper we omit the

proof. It is basically an application of the weak law of large

numbers.
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5. DECOMPOUNDING ON THE SPECIAL
ORTHOGONAL GROUP

Our starting point is the relation between decompounding on

the special orthogonal group SO(3) and multiple scattering.

The direction of propagation (DOP) of a wave/particle in a

random medium is determined by a vector belonging to the

unit sphere S2 ⊂ R
3. The effect of a scatterer encountered at

a random time during the propagation is the transitive action

of a random element of SO(3) on the unit vector. It is clas-

sically admitted that the time between two scattering events

obeys an exponential law [12]. The DOP, noted x(t) after a

time of propagation t, can thus be expressed as

x(t) =
N(t)∏
i=1

Rix0

where the i.i.d. SO(3)-valued random variables (Ri)i≥1 rep-

resent the random action of identical scatterers on the DOP

and x0 is the original DOP. N(t) is the random number of

scatterers encountered after a time t, which can be supposed

independent of the scatterers themselves. Here, we consider

that the wave packet enters the medium at a fixed angle of

incidence. The distribution of x0 is then concentrated at one

point, say the north pole, of S2. As a consequence, the scat-

tering problem reduces to the study of a CPP on SO(3). Phys-

ically, decompounding –i.e. estimating the distribution of

the Ri– means estimating the characteristics of the scatter-

ers, which is of great interest in the study of random media.

We will use decompounding to perform this characterisation.

First, we remind some results about harmonic analysis on

SO(3).

5.1. Harmonic analysis on SO(3)

SO(3) is often considered as the archetype of compact Lie

groups. Here we precise the formalism of section 2 in the case

G = SO(3). The classes of irreducible complex representa-

tions of SO(3) are labelled by a natural index δ = 0, 1, . . .
where the dimension of the reprentation of order δ is equal to

2δ + 1. It is usual to choose the representations whose ma-

trices U δ = {Uδ
ab| − δ ≤ a, b ≤ δ} are given in the ZXZ

convention for the Euler angles by

Uδ
ab(α, β, γ) = eiaαdδ

ab(cos β)eibγ

where (cf. [6]) the dδ
ab note the Wigner d-functions with ap-

propriate normalizations and α, γ ∈ [0, 2π) and β ∈ [0, π]
are the Euler angles. The Haar measure of SO(3) is written

in the Euler angles as dμ(α, β, γ) = (16π2)−1 sinβdαdβdγ.

The Fourier expansion of a function f ∈ L2(SO(3), C) has

the matrix coefficient Aδ = {Aab
δ } where

Aab
δ =

∫
α

∫
β

∫
γ

f(α, β, γ)U δ
ab(α, β, γ)dμ(α, β, γ)

5.2. Symmetries

Returning to the scattering situation described at the begin-

ning of this section, assume the scatterers have a spherical

shape. This amounts to the distribution of the DOP x(t) hav-

ing an axial symmetry. It can be inferred from this symmetry

that the distribution of the ”scatterers” Ri on SO(3) is con-

jugate invariant. In terms of the Euler angles, this distribution

will depend only on β and not on α and γ, its Fourier ex-

pansion reducing to an expansion in Legendre polynomials

dδ
00(cos β) = Pδ(cos β). This is an instance of the general

formula (1) for conjugate invariant functions. This symmetry

assumption is retained for the simulations in subsection 5.4.

5.3. Compound Poisson Process on SO(3)

We consider a CPP Y (t) taking values on SO(3) defined as

Y (t) =
N(t)∏
i=1

Xi (4)

with a similar notation to that explained above and where the

Xi have a conjugate invariant pdf p ∈ L2(SO(3), C). Given

n noisy measurements of Y (t) at time T , the following esti-

mator for p can be evaluated

p̂(α, β, γ) =
B∑

δ=0

δ∑
ab=−δ

(2δ + 1)Âab
δ U δ

ab(α, β, γ)

where B is an appropriately chosen cut-off and for all 0 ≤
δ ≤ B the matrix {Âab

δ } is the Hermitian conjugate of the

(diagonal) matrix obtained following the prescription of equa-

tion (2).

5.4. Simulations

We have simulated CPP on SO(3) with conjugate invariant

distributions for the Xi. We have considered values of λT
from units to a few tens. We avoided higher values in or-

der for our simulations to correspond to a multiple scatter-

ing regime and note a diffusive one, in the physical interpre-

tation proposed above. Three types of distributions for the

Xi have been studied, Gaussian, Von Mises and Exponen-

tial. The Legendre coefficients of the original (i.e. of the Xi)

distributions and those estimated using the approach of sec-

tion 4 are presented in figure (1). The reconstruction error

between the estimated and original Gaussian pdf is presented

in figure (2) as a function of the order of Legendre coeffi-

cients. This error is the mean square error between recon-

structed and original empirical Fourier (here Legendre) coef-

ficients for different orders δ. Figure (2) concerns only the

Gaussian case, where the error is presented for different val-

ues of n, the size of the data set. From figure (1), it is possible

to see that the Von Mises and Gaussian cases are well recov-

ered using our decompounding approach, while in the case
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of exponential distribution, results are poorer. This is due to

the fact that the exponential distribution is more dispersed on

SO(3) than the other two distributions. In figure (2), one can

see that the convergence of the Fourier coefficients is faster

for low orders (small δ). This is due the lower order functions

U δ
ab having lower frequencies.

6. CONCLUSION

The problem of decompounding on compact Lie groups was
presented. Under some simplifying assumptions, a non para-
metric approach to this problem based on harmonic analysis
was given. The importance of the case of the special orthog-
onal group SO(3) to multiple scattering problems was dis-
cussed. Numerical simulations implemented for the case of
SO(3) seem to validate the general approach proposed.
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Fig. 1. Original (solid line) and estimated (∗,◦ and
) Legen-

dre coefficients for Gaussian (Blue), Von Mises (Red) and Ex-

ponential (black) for differents sizes of data sample (∗ = 103;

◦ = 5.104;
 = 106).
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Fig. 2. Reconstruction error (MSE) in the Gaussian case for

different data sample sizes as a function of the Legendre co-

efficient order δ.
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