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ABSTRACT

AR modeling is used in a wide range of applications from
speech processing to Rayleigh fading channel simulation.
When the observations are disturbed by an additive white
noise, the standard Least Squares estimation of the AR
parameters is biased. Some authors of this paper recently
reformulated this problem as an errors-in-variables (EIV)
issue and proposed an off-line solution, which outperforms
other existing methods. Nevertheless, its computational cost
may be high. In this paper, we present a blind recursive EIV
method that can be implemented for real-time applications.
It has the advantage of converging faster than the noise-
compensated LMS based solutions. In addition, unlike EKF
or Sigma Point Kalman filter, it does not require a priori
knowledge such as the variances of the driving process and
the additive noise. The approach is first tested with
synthetic data; then, its relevance is illustrated in the field of
radar sea clutter rejection.

Index Terms— Autoregressive processes, recursive
estimation, radar clutter, Kalman filtering.

1. INTRODUCTION

Linear-model based approaches are very popular in various
applications such as speech processing and biomedical.
When dealing with Autoregressive (AR) processes, the key
issue is usually the estimation of the AR parameters from
noisy observations. Indeed, to reduce the bias on the AR
parameter estimation due to the additive measurement
noise, one solution consists in using instrumental variable
techniques such as the modified Yule-Walker (MYW)
equations or mutually-interactive optimal filter based
solutions [5]. Another approach relies on the “noise-
compensated” Yule-Walker equations, which however
require the estimation of the additive-noise variance [4]. To
solve this dual estimation problem, several off-line
approaches have been proposed, see, e.g., [3] and [12].
Nevertheless, this latter may sometimes diverge.

For what concerns on-line methods, one can use noise-
compensated variants of the least mean square (LMS)
algorithms such as the y-LMS [7], p-LMS [10] and B-LMS
[11]. However, these methods require a large number of
samples to converge (e.g. a few thousands). Kalman
algorithms can be also considered. Since the process and its
parameters have to be jointly estimated, the resulting state
space model is non-linear and the Extended Kalman Filter
(EKF) or the Sigma-Point Kalman Filter [8], namely the
Unscented Kalman filter (UKF) and the Central Difference
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Kalman filter (CDKF), are used. Nevertheless, the variances
of the additive noise and the driving process must be a
priori known.

AR parameter estimation can be viewed as an errors-in-
variables (EIV) issue. In that case, the purpose is to study
the semi-definite positiveness of specific observation
correlation matrices by using the so-called Frisch scheme
[1]. We have analyzed the relevance of the method for
optimal filter-based speech enhancement using a single
microphone [2] and for Rayleigh fading channel estimation
[6]. In theory, this solution has the advantage of blindly
providing the AR parameters, the model order, the
variances of the driving process and the additive noise.
However, its computational cost may be high.

Therefore, in this paper, we propose a recursive version of
the blind identification algorithm. In addition, we suggest
using this approach in the field of radar sea clutter rejection,
where a real-time implementation is crucial.

The paper is organized as follows. In section 2, the
estimation approach is detailed. In section 3, a comparative
study with existing on-line noise-compensated Least
Squares (LS) method is carried out and illustrates the
relevance of our approaches with synthetic data. In section
4, radar sea clutter rejection based on this recursive EIV
(REIV) algorithm is presented.

2. RECURSIVE EIV APPROACH

2.1. Problem statement
Let the p™ order AR process x(n) be defined as follows:

x(n)z—ialx(n—l)+u(n) (D)

I=1
where {a ! }
I=l,...p

zero-mean white noise with variance o7 .

are the AR parameters and u(n) is a

This process is then disturbed by an additive zero-mean
white noise h(n) with variance crbz :

y(n) = x(n)+b(n) 2
In the following, let us define the regressor vectors:

T
?.(n) = [x(n) x(n=1) -+ x(n —p)} = {x(n) o (n)}

T

T

T
?,(n) = [y(n) Yn=1) - y(n —p)} = [y(n) o (n)}
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T T
By(n) = [b(n) b(n—1) - b(n —p)] - [b(n) ol (n)}

and (ﬁu(n)=[u(n) 0 - OT.

Then, let us introduce the extended AR parameter vector:

_ T
9:{1 a, ~--ap} {1 QT} (3)

The model (1)-(2) can be expressed in the matrix form:
(@T (m) -, (n)jé =0 @)
ay (I’l) = ax (n) + (31; (I’l)

Pre-multiplying (4) by [@,(n)—@,(n)]" and taking the
expectation E[.] leads to:

=0 (5)

I?;’u§= R —diag| G2 0--- 0
N
P
with R, = E[@ mp!” (n)} )

Due to (5), E;’l

, 1s a positive semi-definite matrix and the

AR parameters span the kernel of E;’u. However, in all

practical cases, E:’u is not directly available and only the

positive definite autocorrelation matrix of the noisy
observations R , can be considered. It satisfies the relation:

R, =R, +0;1,, (6)

where 1, denotes the identity matrix of size p+1.
Given (6), (5) leads to the following relation:

(E; - diag| 07 + 7 o} - 65]}7:9 ™
The admissible variances ¢ and o} are the scalars that
make 1?; —diag[of +o} o} - O'ﬂ positive  semi-

definite. The AR parameters can thus be estimated by
solving a set of noise-compensated Yule-Walker equations.
It should be noted that, by partitioning the observation

. . Tk
autocorrelation matrix Ry as follows:

R, = R (®)
y !
"R, } p
and by taking into account (3), (7) can be split into the two
following equalities:

o, -0, -0, +r 8=0 9)
r+(R, —0,1,)0=0 (10)
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If 0',3 is known, @ can be deduced from (10) and hence

can be denoted #(c?). Then, ¢ can be obtained' from

(9). So, in the following, we propose an on-line algorithm
based on high-order Yule-Walker equations to estimate

o} . For this purpose, let us define the following two ¢x1
vectors where g > p :

T
coi’(n){x(n—p—l) x(n—p—2) - x(n—p—q)}

T
;o;’(n){y(n—p—l) Wn—p-2) y(n—p—q)}

and the ¢Xx(p+1) correlation matrices:

h_ b N T _ph_ By N T*

R =E oL p]" o |= R = E| ol (! )|
Given (1), one can easily obtain a set of g high-order
Yule-Walker equations:

(R))'6=0 (1
Using relation (11), 0'b2 can be estimated by minimizing the

cost function J (0'13) defined by:
x =2 - s * —
o) =|®R)E| =8 (R (R)) 8(07)(12)

— T
with 0<07 <07 a» 9(0,?):[1 eT(ag)] and 0}y is
the lowest eigenvalue of R y.

2.2. Recursive estimation of the additive-noise variance
In [1] and [2], an off-line solution was considered to obtain
the noise variances. Here, we suggest using the Newton-
Raphson method to derive an on-line algorithm. For this
purpose, let us define the matrix:

zh:(Ri’)T<R£)*=B-5-’?-T-F1 (13)

Given (13) and (3), the criterion defined in (12) can be
expressed as follows:

J(03)=0" (6;)26(c;)+p" 6(c;)+6" (0;)p+0
= f(0)= /(g(c}))
76)=0"20+p"0+6" p+o
and g(o))==(R,-o,1,)"'r.
. 9%J(c})
Therefore, by denoting————=
a 0_2)2

b
Newton-Raphson method can be implemented as follows:

J'(6; (1))
J"(6; (n)

where

J'" (67 (n), the

67 (n+1)=36; (n) -

where » denotes the estimation.
Thus, one has:

' Note that the maximum value of & is obtained when &7

is equal to 0. Hence, o :o'f + rT*9=O'; —FT*(R:)_I’”~

u,max



g (67 (m)" f'(6(n))

&;(n+1)=6; (n)——— — — (14)
g'(6,(n)" ["'(8(n)g' (6} (n))
where g'(&g)za—gzz(éj—&gfp)‘léz(é;)“é (15)
967
N 2
(@)=L =26 16
f'(0) Y X6+p) (16)
0N .
"@)=2L =28 17
1o)== (17)

By replacing (15), (16) and (17) in (14), one obtains:

Gir(n+1)=6;(n) -

(R (mBm) Em)(R)™ (m()
The recursive algorithm proposed here is thus the
following:

(R B EmB(m) +p(n) o

1. Update 67 (n) by using (18).
2. Update ﬁy(n) and 7(n):

@, (n+ D] (n+1)
n—p+1

A n—p A
R (n+l)=———R (n)+
S+ =T R ()

Fn+1)= _1-7'-1};(”)+J’(ﬂ+1)¢y(n+1)

n—p n—p+l1
3. Compute (R, (n+1)"' =(R,(n+1)-67(n+1D1,)™".
4. Compute B(n+1)=—(R.(n+1))"' F(n+1)
5. Update oA'i(n):

|y(n + 1)|2

A2
oi(n+l)=
i ) n—p+1

n}i_plj-l &i(n)+

6. Update 6‘3 (n):

Sr(n+1) =67 (n+1)=6;(n+ D)+ (n+1DB(n+1)

7. Update Iéﬁ (n):

or(n+ D)) (n+1)
n—p—qg+1

5 n-p-4q s
Riin+1)=—""L"L _Rln)+
Ve = P R )

Compute Zh(n—i-l) and extract from it i(n—i—l) and

pn+1).
8. Return to step 1.

If 6;(n+1)<0 or 62(n+1)<0, one can choose

0<,u(n+1)<1 o obtain 0< 62 (n+1)< 62, (n+1).

3. SIMULATION ON SYNTHETIC DATA

We have carried out various simulations with synthetic data.

Here, we consider a 6" order AR process defined by its

p =0 7Sei27r><02 +27x0.4
12 =Y. )

p5,6 — 0.856i27r><0.7 .

The purpose of this first analysis is to evaluate the influence
of the signal-to-noise ratio (SNR) and of the number of
available samples. For this reason, the SNR first varies from
5 to 40 dB with a number M of samples set to 1024. Then,
M has been varied from 64 to 1024 with a SNR equal to
10dB. The results are reported in Tables 1 and 2 and are
based on the Itakura metric / defined by:

6"R.O

I =log (>

glO(aTRxa)

SNR (dB) 5 10 20 40

7-LMS[7] | 2309 | 2.254 | 2241 | 2.254
p-LMSTIO0] | 2.538 | 1.956 | 1.397 1.203

B-LMS[11] | 3371 | 2.330 | 1.259 1.063
EKF [8] 0.523 | 0.117 | 0.013 0.0001
UKF [8] 0.498 | 0.110 | 0.013 0.0001

REIV 1.154 | 0.149 | 0.057 0.008

Table 1 : influence of SNR in Itakura metrics (10°") with M=1024.

poles® P34 =0.8e and

M 64 128 256 512 1024

7-LMS | 5333 | 4.557 | 3.637 | 2915 | 2.262

p-LMS | 6.235 5.492 3.732 | 2.652 1.871

B-LMS | 3924 | 3.187 | 2.657 | 2.414 | 2.302

EKF 1.289 | 0.825 0.470 | 0.291 0.109

UKF 1.269 | 0.796 | 0.452 | 0.275 | 0.104

REIV 1.384 | 0.780 | 0.323 | 0.292 | 0.230

Remark: a variant of the above algorithm can be considered
to avoid any divergence in the on-line procedure by
replacing equation (18) with:

G (n+1)=

(R b)) EmB(n) + p(n))
(RO B ()R ™ (m)b(n)
where ,u(n + lj is first set to 1.

&4 (n)— pu(n+1)
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Table 2 : influence of samples in Itakura metrics (10™") with SNR = 10 dB
The REIV outperforms y-LMS [7], p-LMS [10] and
B -LMS. The methods based on Kalman filtering give
slightly lower Itakura metric than REIV. However, REIV is
totally blind whereas EKF and SPKF require the a priori
knowledge of the noise and driving-process variances.

The purpose of the next section is to study EIV methods in
radar processing.

4. REIV FOR RADAR SEA CLUTTER REJECTION

When dealing with one airborne radar antenna in sea
surveillance mission, the received signal is composed of the
target signal, the thermal noise due to receiver system and
the sea clutter due to the environment returns. The purpose

2 The poles satisfy A(z) — 1+ Zp: a,;z7 = l_p[ (1 - p,z’l)




is then to get rid off the influence of the noise and the
clutter in order to detect the target.

In [9], Wensink proposes firstly to model the sea clutter by
an AR process and to estimate the corresponding
parameters by using Burg’s method for M samples at the
same range (See figure 1). They constitute the Cell Under
test (CUT). For this purpose, the sea clutter is assumed to
be stationary in the neighborhood composed of 2N adjacent
cells. The AR parameters are estimated on each adjacent
cell and averaged. Then, the author deduces the FIR
“inverse filter” to reject the clutter in CUT. To prevent the
AR parameter estimation from being disturbed by the target
itself, one guard cell on both sides of the CUT is not taken
into account.

Ant
Aircraft qma gell
Adjacent under test Adjacent
cells ’_L cells
-— «—>

Azimuth

»
< >

Figure 1: airborne surveillance mission configuration.
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Figure 2: Normalized power spectrum density of CUT with M samples.

However, when dealing with a long-range cell (i.e. cell far
from the aircraft), the additive thermal noise is no longer
negligible and clutter-to-noise ratio (CNR) becomes low. In
that case, using standard LS estimation leads to biased AR
parameter estimations. The resulting filter is no longer
selective enough and the false alarms rate increases.

To avoid this problem and compensate for the influence of
such an additive white noise, EIV approaches can be used.
In the simulation tests we present here, the CNR is varying
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from 5 dB to 20dB. To study the relevance of our approach,
the following detection error rate (DER) is defined:

detection of error samples

"pE number of samples under test (19)
Detection Error Rate r,,
CNR (dB) Wensink EIV method REIV

method [2]/]6] method

20 0 0 0

15 82107 0 0

10 1.066 10~ 0 82107

8 6.400 10 6.4 107 6.03 10"

5 2.872 107 82107 9.34 10"

samples

Table 3: detection error rate

The DER is estimated for each method on synthetic data
composed of a K-distributed clutter and Gaussian noise. As
shown in table 3, The off-line EIV provides lower DER
than the recursive one, but its computational cost is much
higher. In any case, EIV [2] and REIV methods outperform
Wensink’s method.

We are currently working on an extension of this recursive
EIV in the multichannel case for a subsequent use in phased
array antenna in radar processing.
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