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ABSTRACT

The subgradient projection operator has been utilized as a compu-
tationally efficient tool not only for suppression but also for mini-
mization of convex functions in many applications. In this paper, we
propose a systematic scheme to improve significantly the monotone
approximation ability, of the subgradient projection, to the level set
of a convex function. The proposed scheme is based on a simple
observation: the level set of a convex function does not change by
composing any zero-crossing monotonically increasing function. A
numerical example demonstrates the effectiveness of the proposed
scheme in an application to a simple boosting problem.

Index Terms— attracting mapping, monotone approximation
operator, subgradient projection, adaptive filtering, machine learn-
ing

1. INTRODUCTION

Given a continuous convex function, the subgradient projection op-
erator realizes a monotone approximation to the level set of the func-
tion, i.e., the operator can shift any point not in the set strictly closer
to the set while it leaves all points in the set unchanged [1, 2, 3].
The subgradient projection operator has been utilized as a computa-
tionally efficient tool not only for suppression of convex functions
but also for minimization of convex functions in many applications
which include for example convex feasibility problems [4, 5, 6], con-
vex optimization problems [2], adaptive filtering problems [1, 3, 7]
and machine learning problems [8].

The subgradient projection operator is defined as the metric pro-
jection onto a closed half-space defined as the level set of the tan-
gent plane of the convex function. The tangent plane can be seen as
a simple lower bound touching the function at a point. Obviously
only local information on the function, i.e., the value of the func-
tion and its subgradient at one specified point, is utilized to define
the subgradient projection operator. If certain global information on
the function is available additionally, we have seen that much better
monotone approximation operators, than the subgradient projection
operator, to the level set can be constructed (See for example [9, 10]).
Indeed, the operator designs developed in the previous studies [9, 10]
essentially rely on special constructions of better lower bounds, than
the tangent plane, of the convex function with the aid of such global
information. Fortunately, the special construction developed in [9]
achieves the best lower bound among all lower bounds which do not
exceed any function in a class of certain convex functions. However,
if the class is relatively large, the lower bound construction [9] may
not achieve a good approximation for some function in the class.
On the other hand, another lower bound construction [10] has been
developed specially for given a quadratic convex function. This spe-
cial construction gives a tight lower bound for the quadratic function
but is not applicable to other convex functions. So far, there has not

yet been established a systematic operator design which is applica-
ble universally to improve sufficiently the monotone approximation
ability, of the subgradient projection, to the level set of each convex
function even in a wider class. Such a systematic operator design
is important especially for certain major convex cost functions in-
cluding exponential-type functions found for example in boosting
techniques [11, 12] for machine learning.

The goal of this paper is to present a systematic operator design
which is essentially based on a simple observation: the level set of
a convex function does not change by composing any zero-crossing
monotonically increasing function. To this goal, we propose a novel
operator design scheme which defines a monotone approximation
operator as the subgradient projection relative to the composite func-
tion designed carefully without losing its convexity. More precisely,
the problem of designing a good monotone approximation opera-
tor is reduced to that of designing a good zero-crossing monotoni-
cally increasing function which does not violate the convexity of the
composite function. Fortunately, we found a systematic scheme to
design a good zero-crossing monotonically increasing function. By
this scheme, we can improve sufficiently the monotone approxima-
tion ability, of the subgradient projection, to the level set of a twice
differentiable convex function. We also verified the monotone ap-
proximation operator found in [10] is reproduced as a special design
example of the proposed systematic scheme. Moreover by apply-
ing to an exponential-type function, we derived a novel monotone
approximation operator which achieves much better approximation
performance to the level set than the standard projection relative to
the exponential-type function.

Finally, we apply the proposed monotone approximation opera-
tor to a simple boosting problem. This application demonstrates the
effectiveness of the proposed monotone approximation operators.

2. PRELIMINARIES

Let R be the set of all real numbers. Let H be a real Hilbert space
equipped with an inner product 〈x, y〉, x, y ∈ H, and its induced
norm ‖x‖ := 〈x, x〉 1

2 , x ∈ H. A set C ⊂ H is said to be convex
if αx + (1 − α)y ∈ C for all x, y ∈ C and α ∈ [0, 1]. For
any nonempty closed convex set C ⊂ H, the metric projection (or
simply “projection”) PC : H → C maps x ∈ H to the unique point
PC(x) ∈ C such that ‖x−PC(x)‖ = miny∈C‖x−y‖. A function
f : H → R is said to be convex if f(αx+(1−α)y) ≤ αf(x)+(1−
α)f(y) for all x, y ∈ H and α ∈ [0, 1]. The level set of a function
f : H → R is defined by lev≤0 f := {x ∈ H : f(x) ≤ 0}. If the
function f is continuous convex, then lev≤0 f is closed convex.

A mapping T : H → H is called a monotone approximation
operator[9] to a set C 	= ∅ if T satisfiesj ‖T (x) − y‖ < ‖x − y‖ (∀x 	∈ C, ∀y ∈ C)

T (x) = x (∀x ∈ C).
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Obviously, C = Fix(T ) := {x ∈ H | T (x) = x} holds. Moreover
it is not hard to see that C must be a closed convex set [2, 3] (Note:
In fixed point theory, the monotone approximation operator is often
called an attracting mapping [3]).

The fixed point approximation of monotone approximation op-
erators has been applied to many signal processing problems and
machine learning problems [1, 3, 7, 8].

The following simple fact can be used to approximate a fixed
point of a continuous monotone approximation operator.

Fact 1 ([13]). Suppose that H is finite dimensional. Let T be a
continuous monotone approximation operator. Then for any initial
point x0 ∈ H, the sequence (xn)n≥0 generated by

xn+1 = Txn (n = 0, 1, 2, . . .)

converges to a point in Fix(T ).

3. DESIGN OF BETTERMONOTONE APPROXIMATION
OPERATOR TO THE LEVEL SET OF CONVEX FUNCTION

3.1. Key observation for proposed design

In this section, f : H → R is assumed to be a twice differen-
tiable and convex, non-constant function with lev≤0 f 	= ∅, hence
R(f) := {f(x) ∈ R | x ∈ H} � 0.

Proposition 1. Suppose that h : S(⊃ R(f)) → R is a zero-
crossing, i.e., h(0) = 0, continuous function which is twice differ-
entiable on int S and h′(r) > 0,∀r ∈ intS, where intS stands for
the interior of S.

1. Assume that h ◦ f : H → R is convex. Then we have

(i) lev≤0 f = lev≤0(h ◦ f);

(ii) h ◦ f is continuous onH and twice differentiable on
D := {x ∈ H | f(x) > infy∈H f(y)};

(iii) The mapping Tsp(h◦f) : H → H,

Tsp(h◦f)(z) :=

(
z − h(f(z))

h′(f(z))
f ′(z)

‖f ′(z)‖2 if f(z) > 0

z otherwise

is defined as the projection onto

Λ−
h,f (z):=

8<
:
{x ∈ H | 〈x − z, (h ◦ f)′(z)〉

+ (h ◦ f)(z) ≤ 0} if f(z) > 0
H otherwise

⊃ lev≤0 f

is continuous and 1-strongly attracting (see [2, 3]), i.e.,

‖z − Tsp(h◦f)(z)‖2 ≤ ‖z − y‖2 − ‖Tsp(h◦f)(z) − y‖2

(∀z ∈ H, ∀y ∈ Fix(Tsp(h◦f)) = lev≤0 f).

ff
(1)

2. h ◦ f is convex if and only if

〈(f ′′(x))(y), y〉
〈f ′(x), y〉2 ≥ −h′′(f(x))

h′(f(x))
(2)

for any (x, y) ∈ D ×H such that 〈f ′(x), y〉 	= 0.

Remark 1. 1. By (1), Tsp(h◦f) is a monotone approximation
operator to lev≤0 f .

lev≤0 f

Λ−
h1,f (z)

Λ−
h2,f (z)

Tsp(h1◦f)(z)

Tsp(h2◦f)(z)
z

y

Fig. 1. The operator Tsp(h1◦f) is better than Tsp(h2◦f) if (4) holds,
because, for any z 	∈ lev≤0 f , a point Tsp(h1◦f)(z) is closer to
every y ∈ lev≤0 f than a point Tsp(h2◦f)(z) (see Theorem 1).
Tsp(hi◦f)(z) is the projection onto Λ−

hi,f (z) for each z ∈ H (i=1,2)
(see Proposition 1).

2. The function
h0 : S → R, r �→ r,

satisfies all requirements on h in Proposition 1-1 and the
standard subgradient projection Tsp(f) [1, 2, 3] is given by
Tsp(f) := Tsp(h0◦f).

In general, there are many functions satisfying all requirements
on h in Proposition 1-1. What is a good function h in Proposition 1
in order to approximate lev≤0 f?

The next theorem suggests a criterion for choosing better h ∈
Hf .

Theorem 1. Given S ⊃ R(f), let

Hf :=

j
ĥ : S → R

˛̨̨
˛ ĥ satisfies all requirements
on h in Proposition 1-1,

ff
(3)

which is nonempty (this is because h0 ∈ Hf ). Suppose that h1, h2 ∈
Hf satisfy

−h′′
1 (f(x))

h′
1(f(x))

≥ −h′′
2 (f(x))

h′
2(f(x))

, ∀x ∈ D. (4)

Then we have

‖Tsp(h1◦f)(z) − y‖ ≤ ‖Tsp(h2◦f)(z) − y‖
(∀z 	∈ lev≤0 f, ∀y ∈ lev≤0 f).

Theorem 1 tells us that a function h ∈ Hf yielding larger
−h′′(f(x))/h′(f(x)) realizes better Tsp(h◦f) for approximating to
every point in lev≤0 f (see Figure 1).

Thanks to Fact 1, we have the following proposition for applica-
tion of Tsp(h◦f) in Proposition 1.

Proposition 2. Suppose that H is finite dimensional. Let fi : H →
R be a twice differentiable, convex and non-constant function (i =
1, . . . , m), as well as ∩m

i=1 lev≤0 fi 	= ∅. Moreover, for each fi, let
Si ⊃ R(fi) and Hfi

be as defined in (3). For arbitrarily fixed λi ∈
(0, 2) and any selection hi ∈ Hfi

, define Ti := I +λi(Tsp(hi◦fi) −
I) (i = 1, 2, . . . , m), where I : H → H stands for the identity
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mapping, i.e., I(x) = x,∀x ∈ H. Then for any initial point x0 ∈
H, the sequence (xn)n≥0 generated by

xn+1 = Txn (n = 0, 1, 2, . . .), (5)

where T := T1T2 . . . Tm, converges to a point in Fix(T ) =
∩m

i=1 lev≤0 fi.

3.2. Examples of proposed monotone approximation operators

In this subsection and next section, we set H = R
n equipped with

an inner product 〈x, y〉 = xT y, x, y ∈ H, and its induced norm
‖x‖ := 〈x, x〉 1

2 , x ∈ H.
In Example 1, we present a good monotone approximation op-

erator for a quadratic function which has been widely used in recent
adaptive filtering problems [1]. Part of this result is a reproduction of
the monotone approximation operator introduced in [10] as a special
case of the use of Theorem 1.

Example 1. Given A ∈ R
m×n, b ∈ R

m and ρ ∈ R, suppose

f : R
n → R, x �→ ‖Ax − b‖2 − ρ

satisfies lev≤0 f 	= ∅ and x∗ := (AT A)−1AT b is well defined.
Hence f ′(x∗) = 0 holds. Let ξ ≤ miny∈Rn f(y), S := {r ∈
R | r ≥ ξ}(⊃ R(f)), and define

h(Q,ξ) : S → R, r �→
p

r − ξ −
p

−ξ.

Then h(Q,ξ) satisfies not only all requirements on h in Proposition
1-1 but also

〈(f ′′(x))(y), y〉
〈f ′(x), y〉2 ≥ 1

2

1

f(x) − ξ
= −h′′

(Q,ξ)(f(x))

h′
(Q,ξ)(f(x))

≥ −h′′
0 (f(x))

h′
0(f(x))

,

∀(x, y) ∈ D ×H (see (2) and (4)). Hence the mapping
Tsp(h(Q,ξ)◦f) : R

n → R
n,

Tsp(h(Q,ξ)◦f)(z) =

8<
:

z − 2(f(z) − ξ −
p

f(z) − ξ
√−ξ) f ′(z)

‖f ′(z)‖2

if f(z) > 0
z otherwise,

is a continuous monotone approximation operator to lev≤0 f and
satisfies

‖Tsp(h(Q,ξ)◦f)(z) − y‖ ≤ ‖Tsp(h0◦f)(z) − y‖ < ‖z − y‖

(∀z 	∈ lev≤0 f,∀y ∈ lev≤0 f).

Moreover, if we specially set ξ = miny∈Rn f(y)(see [10]), then
h(Q,ξ) is the best design in Hf , i.e.,

‖Tsp(h(Q,ξ)◦f)(z) − y‖ ≤ ‖Tsp(h◦f)(z) − y‖ < ‖z − y‖

(∀z 	∈ lev≤0 f,∀y ∈ lev≤0 f,∀h ∈ Hf ).

In Example 2, we present a good monotone approximation oper-
ator to the level set of an exponential-type function which has been
used widely in machine learning problems.

Example 2. Given ai ∈ R
n(i = 1, . . . , m) and ρ ∈ R, suppose

f : R
n → R, x �→

mX
i=1

exp(〈ai, x〉) − ρ (6)

satisfies lev≤0 f 	= ∅. Let S := {r ∈ R|r > −ρ}(⊃ R(f)) and
define

hE : S → R, r �→ log(r + ρ) − log(ρ). (7)

Then hE satisfies not only all requirements on h in Proposition 1-1
but also

〈(f ′′(x))(y), y〉
〈f ′(x), y〉2 >

1

f(x) + ρ
= −h′′

E(f(x))

h′
E(f(x))

≥ −h′′
(Q,−ρ)(f(x))

h′
(Q,−ρ)(f(x))

≥ −h′′
0 (f(x))

h′
0(f(x))

,

∀(x, y) ∈ D ×H (see (2) and (4)). Hence the mapping
Tsp(hE◦f) : R

n → R
n,

Tsp(hE◦f)(z) =

(
z − (f(z) + ρ) log( f(z)+ρ

ρ
) f ′(z)

‖f ′(z)‖2 if f(z) > 0

z otherwise,

is a continuous monotone approximation operator to lev≤0 f and
satisfies

‖Tsp(hE◦f)(z) − y‖ ≤ ‖Tsp(h(Q,−ρ)◦f)(z) − y‖
≤ ‖Tsp(h0◦f)(z) − y‖ < ‖z − y‖

(∀z 	∈ lev≤0 f,∀y ∈ lev≤0 f).

4. APPLICATION TO BOOSTING

Boosting is a way to realize a highly accurate classification rule by
combining many simple classification rules (base classifiers) into a
single. One of the most successful boosting algorithms is Adaboost
introduced by Freund and Schapire [11]. This algorithm can also be
interpreted as an iterative minimization of the function f defined by
(6) [12]. On the other hand, it has been pointed out for example by
Grove and Schuurmans [14] that Adaboost may lose generalization
performance after many iterations due to excessive suppression of
the function f . Therefore an ideal boosting strategy would be fast
suppression of f to a certain level with fairly low computational cost.
We propose to apply Tsp(hE◦f) to the algorithm (5) as an efficient
boosting algorithm.

We consider a simple supervised learning problem to identify
the unknown classification rule:

l : [−1, 1]4 → {−1, 1}, x �→
j

1 if ‖x‖ < 1

−1 otherwise

by tuning (wj,k) in

Fw (x) :=
4X

j=1

40X
k=1

wj,kfj,k(x)

with the knowledge of finite samples {(xi, l(xi))}50
i≥1, where xi ∈

[−1, 1]4 (i = 1, . . . , 50) is drawn from the uniform distribution over
[−1, 1]4, a class of base classifiers {fj,k : [−1, 1]4 → {−1, 1} (j =
1, . . . , 4, k = 1, . . . , 40)}, are given by

fj,k : [−1, 1]4 → {−1, 1}, x �→
j

1 if (x)j > 21−k
20

−1 otherwise,

and (x)j is the j-th component of x.
For application of the monotone approximation operator Tsp(hE◦f)

in Example 2 together with the algorithm (5) to this simple boosting
problem, we reformulate the above supervised learning problem to
the problem of finding a point in the level set of

f : R
160 → R, w �→

50X
i=1

exp
“
− l(xi)Fw (xi)

”
− ρ

=:
50X

i=1

exp(〈ai, w〉) − ρ. (8)
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(b) ρ = 10−11

Fig. 2. The proposed algorithm (5) for m = 1, f1 = f in (8),
λ1 = 1 and h1 = hE defined by (7) in Example 2 attains the value
ρ faster than the others, in each case.

We compared the algorithm (5) with Adaboost which in this sce-
nario can be described equivalently as an iterative minimization of f
by the following rule: w0 = 0,

j̄k = arg max
j=1,...,n

˛̨̨`
f ′(wk)

´
j

˛̨̨
, (dk)j =

j
1 j = j̄k

0 otherwise,

αk = arg min
α∈R

f(wk + αdk), wk+1 = wk + αkdk.

Figure 2(a) depicts performance comparison between Adaboost
and the algorithm (5) where we usedm = 1, f1 = f with ρ = 10−9

in (8), λ1 = 1. Both algorithms start from common point w0 = 0.
Figure 2(b) shows performance of the algorithms in the same setting
except for ρ = 10−11. Since the proposed algorithm (5) with hE at-
tains the values ρ faster than the other two algorithms, this example
clearly shows notable advantage of the proposed monotone approx-
imation operator Tsp(hE◦f) over the standard subgradient projection
operator Tsp(h0◦f) = Tsp(f) and Adaboost.

5. CONCLUSION

We proposed a systematic scheme to improve the subgradient pro-
jection relative to convex functions. A numerical example demon-
strated the effectiveness of the proposed scheme in the application to
a simple machine learning problem.
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