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ABSTRACT

The problem of affine rank minimization seeks to find the minimum
rank matrix that satisfies a set of linear equality constraints. Gen-
erally, since affine rank minimization is NP-hard, a popular heuris-
tic method is to minimize the nuclear norm that is a sum of singu-
lar values of the matrix variable [1]. A recent intriguing paper [2]
shows that if the linear transform that defines the set of equality con-
straints is nearly isometrically distributed and the number of con-
straints is at least O(r(m + n) log mn), where r and m × n are
the rank and size of the minimum rank matrix, minimizing the nu-
clear norm yields exactly the minimum rank matrix solution. Un-
fortunately, it takes a large amount of computational complexity and
memory buffering to solve the nuclear norm minimization problem
with known nearly isometric transforms. This paper presents a fast
and efficient algorithm for nuclear norm minimization that employs
structurally random matrices [3] for its linear transform and a pro-
jected subgradient method that exploits the unique features of struc-
turally random matrices to substantially speed up the optimization
process. Theoretically, we show that nuclear norm minimization us-
ing structurally random linear constraints guarantees the minimum
rank matrix solution if the number of linear constraints is at least
O(r(m+n) log3 mn). Extensive simulations verify that structurally
random transforms still retain optimal performance while their im-
plementation complexity is just a fraction of that of completely ran-
dom transforms, making them promising candidates for large scale
applications.

Index Terms— Rank minimization, nuclear norm heuristic,
compressed sensing, system identification, structurally random
transforms, random matrices

1. INTRODUCTION

The affine rank minimization problem involves finding the minimum
rank matrix Xr that satisfies a given system of linear equation con-
straints.

Xr = argmin rank(X) s.t. A(X) = b (1)

where b is an observation vector in R
M , X is a matrix variable in

R
m×n and A is a linear mapping defining the linear equality con-

straints from R
m×n to R

M . When a set of feasible models is affine
in the matrix variable, the above minimization is equivalent to find-
ing the simplest model satisfying a given set of constraints. Many
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engineering problems can be formulated as affine rank minimization
such as: minimal order system realization, reduced order controller
design, low dimensional Euclidean embedding and interference with
partial information, etc [4].

Recently, the authors of an inspiring paper [2] show the connec-
tion between compressed sensing [5] and affine rank minimization.
In particular, they show that the minimum rank solution Xr can be
exactly recovered by solving the minimization of the nuclear norm, a
sum of singular values of the matrix, over the given affine space if the
linear mapping is nearly isometrically distributed and the number of
linear constraints p is at least on the order of O(r(m + n) log mn),
where r is the rank of Xr:

Xnuc = argmin‖X‖∗ s.t. A(X) = b (2)

where ‖X‖∗ =
∑r

1 σi(X) and σi(X) are nonzero singular values
of the matrix variable X. A nearly isometric mapping A from R

m×n

to R
M is defined as the linear mapping that satisfies the following

three conditions with all matrices X ∈ R
m×n and ‖X‖2

F = 1:

E{A(‖X)‖2} = 1, (3)

and for all 0 < ε < 1

P (|‖A(X)‖2 − 1| ≥ ε) ≤ 2 exp(
−M

2
(ε2/2 − ε3/3)), (4)

and for all t > 0 and some positive constant c

P (‖A‖ ≥ 1 +

√
mn

M
+ t) ≤ exp(−cMt2). (5)

A typical example of a nearly isometric mapping is a random
matrix of Gaussian or Bernoulli i.i.d entries. Because the nuclear
norm is a convex function, its minimization can be achieved tractably
via several popular algorithms, such as semidefinite programming,
projected subgradient method, or low-rank parametrization [2].

Structurally Random Matrices (SRM) were first proposed [3] as
a fast and highly efficient ensemble for compressed sensing. A struc-
turally random matrix A (using the local randomizer) is a product of
three matrices:

A =

√
d

M
DFR (6)

where

• R, the local randomizer, is a d × d random diagonal matrix
whose diagonal entries Rii are i.i.d Bernoulli random vari-
ables P(Rii = ±1) = 1

2
.
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• F is a d × d orthonormal matrix whose absolute magnitude
of all entries are on the order of O( 1√

d
). In practice, only

F with fast computation and efficient implementation such as
the (normalized) FFT, the DCT, the (normalized) WHT... are
chosen. Finally,

• D, a uniformly random downsampler, is a matrix composed
of nonzero rows of a random diagonal matrix whose diagonal
entries Dii are i.i.d binary random variables with P(Dii =
1) = M

d
. On average, D contains M nonzero rows and thus,

Φ is a M × d matrix.

Algorithmically, the projection can be acquired efficiently as the
following: (i) pre-randomizing a target signal by randomly flipping
sign of its entries(ii) applying a fast transform to the randomized
signal and (iii) finally, randomly keeping M of those transformed
coefficients.

In this paper, we propose a fast and efficient algorithm to solve
the nuclear norm minimization problem, employing SRM as an alter-
native linear transform and a projected subgradient method that effi-
ciently takes advantage of the highly structural property of the linear
transform. The proposed algorithm has computational complexity
and memory requirement only on the order of O(mn log mn). The
projected subgradient method exploits two unique features of SRM.
First, both SRM and its adjoint can be easily implemented as serial
operators without the need of explicit storing of the linear transform.
Second, with a structurally random matrix A, it can be shown that
AAT = d

M
I, where I is the identity matrix, simplifying substan-

tially the orthogonal projection step of the solution approximation to
the constraints subspace.

2. ALGORITHM DESCRIPTION

First, note that the notation A(X) = b is equivalent to Avec(X) =
b, where A is the matrix representation of the linear map A :
R

m×n → R
p and vec(X) denotes a vectorized version of the

matrix X.

We use a projected subgradient method [2] to solve the linearly-
constrained nuclear norm minimization problem (2). This method
computes a sequence of feasible points {Xk} by iteratively updating
Xk by

Xk+1 = Xk − skΠN (A)Yk, Yk ∈ ∂ ‖Xk‖∗ , (7)

where sk > 0 is the stepsize and ΠN (A) denotes the orthogonal pro-
jection onto the kernel of A. The set ∂ ‖Xk‖∗ is the sub-differential
of the nuclear norm at Xk given by

∂ ‖Xk‖∗ =
{
UVT + W : XWT = WT X = 0 and ‖W‖ ≤ 1

}
,

where U ∈ R
m×r , V ∈ R

n×r , and Xk = UΣVT depicts the
singular value decomposition of Xk.

For general choices of the linear map A : R
m×n → R

M , this
method is quite computationally intensive for large-scale problems
as we have to solve a least-square problem in each iteration to find
the orthogonal projection. Now, we will show how to simplify this
algorithm by exploiting the structure of the SRM A.

Proposition 2.1. If A is a SRM (using the local randomizer or the
global randomizer), AAT = d

M
I.

Proof. It is easy to verify that RRT = I, FFT = I, and DDT = I.
Therefore, we have AAT = d

M
I.

This property of A greatly simplifies the projected subgradient
method as follows. First we show how to choose an initial point X0

that satisfies the linear constraint A(X) = b. We can initialize it
to be A+b, where A+ = AT is the Moore-Penrose pseudoinverse
of A. Alternatively, we also can choose a random point X0 and
then project it to the feasible region. Due to the structure of A, the
projection can be done as follows.

Π{X:A(X)=b}X0 = X0 − M

d
At

(A (X0) − b
)

where Π{X:A(X)=b} denotes the orthogonal projection onto the
affine subspace {X : A(X) = b}.

Similarly, the orthogonal projection in (7) can be simplified as
follows

ΠN (A)Yk = Yk − M

d
At (A (Yk)) .

Since both structurally random operator A and its adjoint At have
fast and efficient implementation, the update step can be performed
efficiently.

There are various choices for the stepsize sk. If the nuclear norm
of the optimal solution Xr is known or can be estimated, then we can
select the optimal stepsize [6]

sk =
‖Xk‖∗ − ‖Xr‖∗∥∥ΠN (A)Yk

∥∥2

F

.

Otherwise, the stepsize sequence {sk} can be chosen as a non-
summable diminishing sequence.

The nuclear norms of the sequence {Xk} is usually not mono-
tonically decreasing. We may terminate the algorithm when the rela-
tive change in the objective function is less than a prescribed thresh-
old, or the singular values of the current matrix achieve satisfactory
values.

The proposed method of projected subgradient using SRM is
summarized below.

Step 1 Select a feasible initial point X0 as described above.

Step 2 At the kth iteration, update the current solution by

Xk+1 = Xk − sk

(
Yk − M

d
At (A (Yk))

)
, Yk ∈ ∂ ‖Xk‖∗ .

Step 3 If the stopping criterion is satisfied, then output the
current matrix as the solution and stop. Otherwise, go to Step 2.

3. THEORETICAL ANALYSIS

We now claim the main theoretical result of this paper:

Theorem 3.1. If A is a structurally random operator (using the lo-
cal randomizer), solving the nuclear norm minimization (2) guaran-
tees to yield the minimum rank matrix solution (1) , i.e. Xnuc = Xr

if the number of linear equality constraints M is at least O(r(m +
n) log3 mn), where r and m × n are the rank and size of the mini-
mum rank matrix Xr .

Compared with a nearly isometric mapping (e.g., a random ma-
trix of Gaussian or Bernoulli i.i.d entries), structurally random op-
erators require a slightly larger number of linear constraints that is
scaled up by a factor of log2 mn. However, as one can clearly see in
our followed-up numerical experiments, the performance of SRM is
completely comparable to, if not slightly better than, that of a nearly
isometric mapping.
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Proof. Although we could not prove that SRM is nearly isometri-
cally distributed, we will show that it satisfies the inequality (3) and
(5) and a modified version of (4).

First, denote y = FRx, where x = vec(X) and without loss of
generality, assume that ‖X‖2

F = ‖x‖2 = 1. Due to the orthonor-
mality property of F and R, ‖y‖2 = 1. Note that Ax = Dy can be
re-written as a sum of independent random variables as the follow-
ing:

‖Ax‖2 =
d

M
‖Dy‖2 =

d

M

d∑
i=1

ρiy
2
i

where ρi are i.i.d binary random variables P (ρi = 1) = M
d

and

E{ρi} = M
d

. Thus,

E{‖Ax‖2} =
∑

1≤i≤d

y2
i = ‖y‖2 = 1

which implies (3). In addition, it is easy to verify (5) as the spectral

norm of A =
√

d
M

.

The next proposition states that A has a property roughly similar
to (4):

Proposition 3.1. Let A be a structurally random operator from
R

m×n to R
M . Assume that ‖X‖2

F = ‖vec(X)‖2 = 1. Denote
y = FRvec(X) and K = maxi≤i≤d d|yi|2, where d = mn. Then,
for all 0 < ε < 1 and for some positive constant c,

P (|‖A(X)‖2 − 1| ≥ ε) ≤ 2 exp(
−Mcε2

K2
) (8)

Moreover, the value of K can be bounded as shown in the fol-
lowing proposition:

Proposition 3.2. With a vector x ∈ R
d and ‖x‖ = 1, denote

y = FRw. Let c be a positive constant such that max1≤i,j≤d |Fij | =√
c
d

. Then,

P{ max
1≤i≤d

|yi| ≥
√

2c log(2d/α)

d
} ≤ α. (9)

Theorem 3.1 can be easily derived from the following lemma
and Theorem 3.3 in [2] which asserts that Xnuc = Xr if the re-
stricted isometry constant δ5r ≤ 0.1, where the restricted isometry
constant δr(A) is defined as the smallest number such that

(1 − δr) ≤ ‖A(X)‖ ≤ (1 + δr) (10)

holds for all matrices X of at most rank r and ‖X‖2
F = 1.

Lemma 3.1. Assume that A is a SRM. For a fixed number δ, 0 ≤
δ ≤ 1, with probability at least 1 − 1

mn
, the restricted isometry

constant δr(A) ≤ δ if M ≥ c0r(m+n) log3 mn, where c0 depends
only on δ.

Proof. Define probabilistic events QX = {|‖A(X)‖2 − 1| ≥ δ
2
}

and K = {K ≤ 2c log 2d/α}, where c and α are constants in (9).
Following the same arguments of the proof of Theorem 4.2 in [2],
we have:

P (δr(A) ≥ δ) ≤ P (
⋃
X

QX) + P (‖A‖ ≥ δ

2ε
− 1) (11)

Conditioning on the event K,

P (δr(A) ≥ δ|K) ≤ P (
⋃
X

QX|K) + P (‖A‖ ≥ δ

2ε
− 1|K) (12)

and thus,

P (δr(A) ≥ δ) ≤ P (
⋃
X

QX|K) + P (K) + P (‖A‖ ≥ δ

2ε
− 1|K)

(13)
On the right-hand side of (13), the last term can be made to be zero
if we choose ε < δ

4
(
√

mn/M + 1)−1 because ‖A‖ =
√

mn/M
regardless of the event K. The second term can be shown to be less
than 1/2mn if we choose α = 1/2mn by Proposition (3.2). We fix
these values of α and ε. Due to the lemma 4.3 and the lemma 4.5 of
computing the covering number in [2] and the proposition 3.1 above:

P (δr(A) ≥ δ) ≤ 2(
2c0

ε
)r(m+n−2r)(

24

δ
) exp(

−Mcδ2

K
) +

1

2mn

where c0 is some contant. With the choice of ε and α above and
K ≤ 2c log 2d/α = 2c log 4(mn)2,

P (δr(A) ≥ δ) ≤ 2(
2c0

ε
)r(m+n−2r)(

24

δ
)r2

exp(
−Mcδ2

4c2 log2 4(mn)2
)+

1

2mn

Finally, we can make the first term in the right-hand side the
above inequality less than 1/2mn if M ≥ O(r(m + n) log3 mn)
and thus, derive the lemma 3.1.

Detailed proofs of Lemma 3.1 and Propositions 3.1, 3.2 will be
provided in the journal version of this paper due to space limitation.

4. NUMERICAL RESULTS

We compare the performance and computational time of the pro-
jected subgradient algorithm described in Section 2 between a com-
pletely random matrix and a SRM for the linear transform. For
simplicity, we assume the nuclear norm of the original signal Xr

is known and use that value for the optimal step size in the projected
subgradient algorithm.

Experiment 1: We adopt the MIT logo image [2] that has size
of 46 × 81 (d = 3726) and rank r = 5 as the input signal Xr . We
sample it using a Gaussian i.i.d measurement matrix and a SRM with
various number of measurements M = {700, 750, 800, . . . , 1500}.
The projected subgradient algorithm is used to find a solution of the
nuclear norm minimization Xnuc. Fig. 1 depicts the performance
curves of these two measurement matrices. The numerical values
on the x-axis represent the number of linear constraints (or measure-
ments) M while those on the y-axis represent the Signal to Noise Ra-
tio (SNR in dB) between Xr and Xnuc. Visually reconstructed MIT
logo images from 1100 measurements of the i.i.d Gaussian mea-
surement matrix and the SRM are also shown in Figs. 3(a) and (b),
respectively. As the reader can observe, both performance curve and
visually reconstructed image using the SRM method are slightly bet-
ter than those from the i.i.d Gaussian method.

Experiment 2: n × n matrices of rank r are generated by
choosing Gaussian random matrices U, V of size n × r and setting
Xr = UVT , where the rank r = 5 is fixed and the dimension
n ∈ {40, 50, 60, 70}. For each matrix Xr , we take M = n2/2
measurements using i.i.d Gaussian measurement matrix and SRM.
The projected subgradient algorithm is used to exactly recover Xr

by solving the nuclear norm minimization problem. The algorithm
iterates until the SNR between the approximation and the original
signal is greater than or equal to 40 dB that is regarded as exact
recovery. For i.i.d Gaussian matrix, the projection matrices are
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Fig. 1. Performance curves of i.i.d Gaussian and SRM measurement
matrices: SNR vs. the number of measurements.

pre-computed and stored. The time for these computations (which
is significant) is excluded from the running time in our comparison.
Fig. 2 illustrates the amount of time required for exact recovery vs.
the dimension n of low-rank matrices. Each point is obtained by
averaging the running time over 10 different Xr of the same size.
In this experiment, the amount of time required for exact recovery
using SRM slightly decreases when the dimension n increases. This
is because when the number of measurements M = n2/2 increases
and the rank r = 5 is kept fixed, the algorithm converges faster
although there is a small increase of computational complexity at
each iteration. One can clearly see a substantial improvement of
speed when using SRM over using a completely random matrix.
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Fig. 2. Complexity comparison of the reconstruction algorithm us-
ing i.i.d Gaussian and SRM measurement matrices: running time vs.
a row-dimension of a low-rank square matrix.

5. CONCLUSIONS

This paper presents a fast and efficient algorithm of nuclear norm
minimization for finding the minimum rank matrix with complex-

(a)

(b)

Fig. 3. Reconstructed MIT logo from 1100 measurements using (a)
the i.i.d Gaussian matrix and (b) the SRM.

ity on the order of O(mn log mn), where m × n is the size of the
minimum rank matrix. It is based on the SRM ensemble and a pro-
jected subgradient method that specifically exploits the efficient fea-
tures of SRM. The algorithm theoretically guarantees to provide the
minimum rank solution if the number of linear constraints or mea-
surements is at least O(r(m + n) log3 mn), where r is the rank
of the minimum rank matrix. Simulation results verify that its per-
formance is comparably optimal while its computational complex-
ity is substantially lower comparing to that of a completely random
measurement matrix, making it a very promising candidate for large
scale applications.
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