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ABSTRACT

We study the invertibility of M -variate polynomial (respec-
tively : Laurent polynomial) matrices of size N by P . Such
matrices represent multidimensional systems in various set-
tings includingfilter banks, multiple-inputmultiple-output sys-
tems, and multirate systems. The main result of this paper is
to prove that when N − P ≥ M , then H(z) is generically
invertible; whereas when N − P < M , thenH(z) is gener-
ically noninvertible. As a result, we can have an alternative
approach in design of the multidimensional systems.

Index Terms— Generic Invertible, Left Invertibility, Per-
fect Reconstruction, Multirate Systems, Generic Property.

1. INTRODUCTION

During the last two decades, one dimensional multirate sys-
tems in digital signal processing were thoroughly developed.
In recent years, due to the high demand in multidimensional
processing including image and video processing, volumetric
data analysis and spectroscopic imaging, multidimensional
multirate systems have been studied more extensively. One
key property of a multidimensionalmultirate system is its per-
fect reconstruction, which guarantees that an original input
can be perfectly reconstructed from the outputs.
In a multidimensional multirate system, a digital signal is

split into several channels and processed with different sam-
pling rates. The most popular multirate systems are filter
banks. Using the polyphase representation in the z-domain
[1], we can represent the analysis part as an N × P matrix
H(z) with entries in a Laurent polynomial ring C[z1, z2, ...,
zM , z1

−1, ..., zM
−1]. Here M is the dimension of signals,

N is the number of channels in the filter bank, and P is the
sampling factor at each channel. An application of this set-
ting may arise in multichannel acquisition. Here we collect
data about unknown multidimensional signal X(z) as out-
put of the analysis part. The acquisition system (filtersHi(z)
and sampling matrixD) is fixed and known beforehand. The
objective is to reconstruct X(z) with an P × N synthesis

polyphase matrix G(z). The existence of a synthesis part
becomes a purely mathematical question. The perfect recon-
struction condition holds if and only if G(z)H(z) = IP

where IP is the P × P identity matrix.
Then it is a natural question to ask: When does the system

have a high probability of the existence of an inverse? Ra-
jagopal and Potter [2] and Zhou and Do [3] have investigated
this question and made several conjectures. We investigate
the systems by varyingM , N and P . In the experiments, we
found that whenM −N ≥ P , the existence of an inverse is
“almost surely”. On the other hand, whenM − N < P , the
nonexistence of an inverse is “almost surely”. To precisely
study this inverse existence problem, we employ the concept
of “hold generically” [4].

2. GENERIC INVERTIBILITY

2.1. Generic Property

In [3], Zhou and Do made the following conjectures.

Conjecture 1 SupposeH(z) is an N × P M -variate poly-
nomial (resp. : Laurent polynomial) matrix with N ≥ P . If
N − P ≥ M , then it is “almost surely” polynomial (resp. :
Laurent polynomial) left invertible. Otherwise, it is “almost
surely” polynomial (resp. : Laurent polynomial) left nonin-
vertible.

However, Zhou and Do did not give a precise definition of
“almost surely”. In order to have the appropriate language,
we employ the concept of “hold generically”.

Definition 1 (Generic) [4] A property is said to hold gener-
ically for polynomials f1, .., fn of degree at most k1, ..., kn if
there is a nonzero polynomial F in the coefficients of the fi

such that the property holds for f1, ..., fn whenever the poly-
nomial F (f1, ..., fn) is nonvanishing.

Lemma 1 If a property of polynomials of degree at most k1,
..., kn inm variables is generic, then the coefficient space C of
polynomials whose polynomials failed to satisfy the property
is measure zero and nowhere dense.
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Proof By the definition of hold generically, there exists a
nonzero polynomial F in the coefficients of the fi such that
the property fails to satisfy for f1, ..., fn for which the polyno-
mialF (f1, ..., fn) is vanishing. LetRi be the set ofM -variate
polynomials of degree less than or equal to ki. By Gunning in
[5, p.9], λl({(f1, ..., fn) ∈ ∏n

i=1 Ri | F (f1, ..., fn) = 0}) =

0where l =
(
k1+m

m

)
+...+

(
kn+m

m

)
is the dimension of the co-

efficient space. Thus, the coefficient space C of polynomials
whose polynomials failed to satisfy the property is measure
zero. To show the set is nowhere dense, it is equivalent to
show that the closure of the set contains no open set. Sup-
pose it contains an open ball B(ε) with some radius ε > 0.
Since F−1({0}) is a closed set, C is also in F−1({0}). Thus,
F−1({0}) contains the open ball B(ε). However, this contra-
dicts the fact that F−1({0}) is measure zero. Therefore, the
coefficient space of polynomials whose polynomials failed to
satisfy the property is nowhere dense.

The immediate consequence is that if f1, ..., fn are drawn in-
dependently from a probability distributionwith respect to the
Lebesgue measure, the property of f1, ..., fn holds with prob-
ability one. Furthermore, suppose f̃0, ..., f̃n satisfies the prop-
erty. Since the coefficient space C of polynomials whose poly-
nomials failed to satisfy the property is nowhere dense, there
exists an open ballB(ε) around f̃0, ..., f̃n for some ε > 0 such
that the property is satisfied within the open ball B(ε) . This
shows that the system with the property is robust [6].

2.2. Generically Invertible when N − P ≥ M

To prove our main theorem in this section, we need to employ
the resultant of the polynomials.
Theorem 1 (Resultant) If we fix positive degrees k0, ..., kn,
then there is a unique nonzero polynomial called the resul-
tant RES(k0,...,kn) ∈ C[{ui,j}] where the variables ui,j cor-
respond to the coefficients of i-th polynomial. If F0, ..., Fn ∈
C[x0, ..., xn] are homogeneous of degrees k0, ..., kn, then F0,
..., Fn have a nontrivial common zero over C if and only if
RES(k0,...,kn)(F0, ..., Fn) = 0.

Theorem 2 If N − P ≥ M and k > 0, then an N × P
polynomial M -variate matrix H(z) of degree at most k is
generically polynomial left invertible.

Proof The strategy of this proof is to find a nonzero poly-
nomial F such that F (H(z)) = 0 for every noninvertible
matrix H(z) of degree at most k. Let Z = (z0, ..., zM ). If
f(z) = f0(z) + f1(z) + ... + fl(z) is the decomposition
of the polynomial f(z) into sums of forms fi(z) of degree
i, then the homogenization f(Z) of f(z) of degree k is de-
fined to be f(Z) = zk

0f0(z) + zk−1
0 f1(z) + ... + zk−l

0 fl(z).
Let hi(Z) be the ith row of an N × P matrix H(z). Let
ti(Z) be the determinant of the P × P submatrix contain-
ing hi(Z), hi+1(Z), ...,hi+P−1(Z). Define φ to be a func-
tion such that H(z) �→ (t1(Z), t2(Z), ..., tM+1(Z))T . Ra-
jagopal and Potter in [2, 7] show that ifH(z) is noninvertible

and N ≥ P , then the P × P maximal minors ofH(z) have
a common zero. Suppose (z̃1/z̃0, z̃2/z̃0, ..., z̃M/z̃0) is a so-
lution of the maximal minors of H(z) where z̃0 �= 0. Then
(z̃0, z̃1, z̃2, ..., z̃M ) is a nonzero solution of maximal minors
of H(Z). Since {t1, ..., tM+1} is a part of the subset of the
set of maximal minors of H(Z), this implies that φ(H(z))
have a nontrivial common zero. Therefore, by the property of
the resultant shown in Theorem 1, we know RES(Pk,...,Pk)

◦φ(H(z)) = 0 for all noninvertible matrices H(z) of de-
gree at most k. The RES(Pk,...,Pk) and ti are polynomials,
so is RES(Pk,...,Pk) ◦ φ. Last but not least, we need to show
RES(Pk,...,Pk) ◦ φ is not a zero function. Let

T (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0

z
k

1 1 . . . 0
...

...
. . . 1

z
k

M z
k

M−1

. . . z
k

1

0 z
k

M

. . .
...

... . . .

. . . z
k

M

0 . . . 0 0
...

...
...

...
0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be an N × P matrix. Suppose RES(Pk,...,Pk) ◦ φ(T (z)) =
0. By Theorem 1, we know that ti’s have a nontrivial com-
mon zero. i.e. there exists Z̃ a nonzero solution such that
tM+1(Z̃) = z̃Pk

M = 0. This implies z̃M = 0. If z̃M = 0, then
tM (z̃0, z̃1, ..., z̃M−1, 0) = z̃Pk

M−1 = 0. Thus z̃M−1 = 0. Con-
tinuing the process, we can conclude z̃0 = z̃1 = ... = z̃M =
0. This contradicts the assumption that Z̃ is nontrivial. So
RES(Pk,...,Pk) ◦ φ(T (z)) �= 0. ThereforeRES(Pk,...,Pk) ◦ φ
is not zero function. By the definition of hold generically, we
conclude that H(z) of degree at most k is generically poly-
nomial left invertible matrix.

Theorem 3 If N − P ≥ M and k > 0, then an N × P
polynomial M -variate matrix H(z) of degree at most k is
generically Laurent polynomial left invertible.

Proof If a polynomial matrix H(z) is Laurent polynomial
left noninvertible, then H(z) is also polynomial left nonin-
vertible. According to Theorem2, this shows thatRES(Pk,...,Pk)

◦φ(H(z)) = 0 for all Laurent polynomial left noninvertible
polynomial matrixH(z).

2.3. Generically Noninvertible when N − P < M

Projective n-space Pn is the set of equivalence classes of (n+
1)-tuples (a0, ...., an) of elements ofC, not all zero, under the
equivalence relation given by (a0, ...., an) ∼ (λa0, ...., λan)
for all nonzero λ ∈ C.

Definition 2 (Height) The height of a prime ideal ht p is the
supremum of the lengths n of strictly descending chains p =
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p0 ⊃ p1 ⊃ ... ⊃ pn of prime ideals. For an arbitrary ideal I ,
ht I = inf{ht p | I ⊂ p, p is prime ideal}.
Lemma 2 Given H(z) is N × P polynomial matrix in M
variables of degree at most k > 0 andN ≥ P . Let V ({mi})
:= {Z ∈ Pn | mi(Z) = 0 for all i = 1, ...,

(
N
P

)} wheremi

is a maximal minor ofH(Z) with some ordering andH(Z)
is the homogenization ofH(z) of degree k. Then V ({mi}) is
empty if and only if ht 〈mi〉 = M + 1. Therefore if V ({mi})
is empty, then N − P ≥ M . In other words, if N − P < M ,
then V ({mi}) is nonempty.
Proof Since mi is homogeneous, then the unit does not lie
in 〈mi〉. This implies that 〈mi〉 �= C[x0, ..., xn]. By [4,
p.370] and the definition of radical ideal, V ({mi}) is empty
if and only if 〈√mi〉 = 〈x0, ..., xM 〉. It is easy to see that
ht 〈√mi〉 = M + 1. Since ht 〈mi〉 = ht 〈√mi〉, the height
of 〈mi〉 is also M + 1. Macaulay in [8, p.54] proved that
ht 〈mi〉 ≤ N − P + 1.

Definition 3 (Weak-Zero) [9] A point in Pn is said to be
weak-zero if at least one of its coordinates is zero.

Lemma 3 [10] The polynomialmatrixH(z) is Laurent poly-
nomial invertible if and only if the set V ({mi}) contains only
weak-zeros whereH(z), V andmi are same as above lemma.

Theorem 4 If N − P < M and k > 0, then an N × P
polynomial M -variate matrix H(z) of degree at most k is
generically Laurent polynomial left noninvertible.

Proof The strategy of the proof is the same as aboveTheorem
2. We will find a nonzero polynomialF such thatF (H(z)) =
0 for every Laurent polynomial left invertible polynomial ma-
trix H(z). If N < P , then every polynomial matrix is left
noninvertible. Now consider H(z) is invertible. Let cij be
a coefficient for the constant term of hij(z) where H(z) =
(hij(z)). Define a function F1 such that

H(z) �→
∏

i=1,...,N j=1,...,P

cij .

If hij(z1, ..., zN−P+1, 0, ..., 0) = 0 for some i, j, then it im-
plies cij = 0. This shows that F (H(z)) = 0 in (1). If
hij(z1, ..., zN−P+1, 0, ..., 0) �= 0 for all i, j, then H(z1, ...,
zN−P+1, 0, ..., 0) is also invertible because there exists Lau-
rent polynomial matrix G(z) such that G(z)H(z) = I and
G(z1, ..., zN−P+1, 0, ..., 0) is well-defined. We can now as-
sume that M = N − P + 1. Define ti(Z) to be the same

as Theorem 2. Let t
(i)
j = tj(z0, ...,

i-th
0 , ..., zM ). Define

θi to be a function such that H(z) �→ (t
(i)
1 , ..., t

(i)
M )T for

i = 0, ..., M . By Lemma 2 and Lemma 3 and the fact that
{t(i)1 (Z), ..., t

(i)
M (Z)} is the subset of the set of maximal mi-

nors ofH(Z), it implies that θi(H(z)) have a nonzero com-
mon zero for some i = 0, ..., M . By the property of the re-
sultant shown in Theorem 1, we know that given any Lau-
rent polynomial left invertible polynomial matrix H(z), so

N
1 2 3 4

1 0 500 500 500
M=1 P 2 0 0 500 500

3 0 0 0 500

1 0 0 500 500
M=2 P 2 0 0 0 500

3 0 0 0 0

1 0 0 0 500
M=3 P 2 0 0 0 0

3 0 0 0 0

Table 1. Inversibility test for a random polynomial matrix
generator with differentN , P andM in 500 test cases

RES(Pk,...,Pk) ◦ θi(H(z)) = 0 for some i = 0, ..., M . The
RES(Pk,...,Pk) and t

(i)
j are polynomials, so isRES(Pk,...,Pk)◦

θi. Similar to Theorem 2, we can show RES(Pk,...,Pk) ◦ θi is
not a zero function. Now let

F = F1 ×
M∏
i=0

RES(Pk,...,Pk) ◦ θi. (1)

By previous discussion, F (H(z)) = 0 for all Laurent poly-
nomial left invertible polynomial matrix H(z). This shows
that ifN−P < M , then a polynomial matrixH(z) of degree
at most k is generically Laurent polynomial left invertible.

Theorem 5 If N − P < M and k > 0, then an N × P
polynomial M -variate matrix H(z) of degree at most k is
generically polynomial left noninvertible.

Proof Similar proof from Theorem 3.

2.4. Simulation and Applications

From Table 1, we used a random polynomial matrix genera-
tor to generate polynomial matrices with each entry of degree
less than or equal to 4 and the random coefficients are from 1
to 100. In each value of N , P andM , we ran 500 samples to
test the inversibility. We found out that they agreed with our
theorems. These theorems lead to some applications. For im-
age deconvolution from multiple FIR blur filters, Harikumar
and Bresler in [6] show that perfect reconstruction is almost
surely, when there are at least three channels. Since image
is two dimension (i.e. M = 2) and the downsampling rate
is just one (i.e. P = 1), by Theorem 3, we know that the
perfect reconstruction is almost surely if number of channels
is greater than two (i.e. N ≥ 3). Therefore Harikumar and
Bresler’s image deconvolution is a special case of our main
theorem. Another application is that we can have an alterna-
tive approach in designing multidimensional filter banks. We
can freely design the analysis side first such that it satisfies
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the condition (i.e. N − P ≥ M ). Then , by Theorem 3 and
Lemma 1, we can almost surely find a perfect reconstruction
inverse for the synthesis polyphase matrix.

2.5. Fast Computation of Left Inverse

Another application is that we can improve the Laurent poly-
nomial inverse algorithm [11]. Since if N − P ≥ M and
H(z) is a polynomial matrix, thenH(z) is generically Lau-
rent polynomial left invertible by theorem 3. However, at the
same time, theH(z) is generically polynomial left invertible
by Theorem 2. Therefore instead of apply the Laurent Poly-
nomial Inverse Algorithm in [11], we should simply apply the
Polynomial Inverse Algorithm in [11] which is less expensive
in term of time and storage. For a convenience sake, we de-
note our Laurent Polynomial Inverse Algorithm 2 in [11] to
be LPIA and denote our Polynomial Inverse Algorithm 1 in
[11] to be PIA.

Algorithm 1 (Faster Version) The computational algorithm
for a Laurent polynomial left inverse matrix.
Input: N ×P Laurent polynomial matrixH(z) withM vari-
ables.
Output: P ×N Laurent polynomial matrixG(z), if it exists.
1. MultiplyH(z) by a commonmonomial zl such that zl

H(z)
are polynomial matrix.
2. Call PIA with the input zl

H(z).
3. If the output of PIA is J(z), then output z−l

J(z).
4. Otherwise call LPIA.

Example 1 Compare the processing time between LPIA and
Algorithm 1. LetH(z1, z2)

=

⎛
⎜⎝

4z1 7z1
−1

z
2

2 + 2 + 10z1
−1

1 + 10z1
−1 10z1 + 3z2

7z1 + 9z2 + 10z1
−1

z2 + 10z1
−1 0

8z1
−1

z
2

2 + 10 + 4z1
−1 6z1

−1
z
2

2

⎞
⎟⎠

be a Laurent polynomial matrix. Then we found out that the
run time of LPIA and Algorithm 1 is 0.23 sec and 0.06 sec re-
spectively for using a desktop PC. This agrees that Algorithm
1 is faster than LPIA in this example.

3. CONCLUSION

We shows that there is a sharp phase transition on the invert-
ibility depending on the size and dimension of a given Lau-
rent polynomial matrix. Specifically when N − P ≥ M , the
N×P polynomial (resp. : Laurent polynomial) ofM -variate
matrix is generically invertible; whereas when N − P < M ,
the matrix is generically noninvertible. Using this sharp phase
transition property, we develop a fast algorithm to compute a
particular left inverse for a given Laurent polynomial matrix.
These results suggest an alternative approach in designing

multidimensional filter banks by freely generating filters for
the analysis side first. If we allow an amount of oversampling

(i.e. N − P ≥ M ), then we can almost surely find a per-
fect reconstruction inverse for the synthesis polyphase matrix.
These results also have potential applications in multidimen-
sional signal reconstruction from multichannel filtering and
sampling.
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