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ABSTRACT

In this paper, we propose a new design method of ΔΣ modu-
lators. First, we analyze the stability of ΔΣ modulators. We
show a parametric representation of all stabilizing loop filters
for a linearized model, and then an analysis of the nonlinear
stability is discussed. Next, by using the parameterization of
loop filters, we propose an optimal design to shape the fre-
quency response of the noise transfer function (NTF). Gen-
eralized KYP (Kalman-Yakubovic-Popov) lemma is used to
reduce our optimization to a linear matrix inequality.

Index Terms— ΔΣ modulation, quantization, H∞ opti-
mization, generalized KYP lemma

1. INTRODUCTION

ΔΣ modulators [1] are widely used in AD (Analog-to-
Digital) and DA (Digital-to-Analog) converters, in which
high performance can be obtained with coarse quantizers.

A fundamental issue in designing ΔΣ modulators is noise
shaping in the frequency domain [1]. A usual solution to this
is to insert accumulator(s) in the feedback loop to attenuate
the gain of the noise transfer function (NTF) in low frequen-
cies. This methodology looks like PID (Proportional-Integral-
Derivative) control [2], in which the performance of the de-
signed system depends on the amount of experiences of the
designer. That is, the conventional design is of an ad hoc na-
ture.

Let us consider a general ΔΣ modulator shown in Fig.
1. In this modulator, Q is a quantizer and H = [H1, H2]

H Q
yψ

u

Fig. 1. ΔΣ modulator

is a linear filter with 2 inputs and 1 output. The filter H1

shapes the signal transfer function (STF) from the input u to
the output y to be 1 in the frequency band of interest. On the
other hand, the filter H2 eliminates the in-band quantization
noise by shaping the NTF.

To shape optimally the NTF in the frequency band of in-
terest, say [0, Ω], we minimize the maximum of the gain of
the NTF in [0, Ω]. This is related to a minimax optimization
(or an H∞ one). We have proposed an H∞ optimization in
[3], in which we have to choose a suitable weighting function
to obtain a good performance. On the other hand, we propose
in this article more useful method with no weighting function,
by generalized Kalman-Yakubovic-Popov (KYP) lemma [4].
Then the optimization can be reduced to one with a linear
matrix inequality (LMI). The idea to apply generalized KYP
lemma to ΔΣ modulator design is also proposed in [5], in
which they assume one-bit quantizer for Q and optimize the
average power of the reconstruction error in low frequencies.
In contrast to this approach, our optimization is for quantiza-
tion noise shaping, which is more familiar to engineers and
researchers in this area. Moreover we assume more general
quantizers and under these quantizers we also analyze the sta-
bility of ΔΣ modulators.

2. FREQUENCY SHAPING IN ΔΣMODULATORS

In this section, we discuss a role of the linear system H =
[H1, H2] (the loop filter) in the ΔΣ modulator shown in Fig.
1. To make the analysis easy, we use the linearized model
shown in Fig. 2. By using this model, the input-output equa-
tion of the modulator in Fig. 2 is given by y = TSTF u +
TNTF n, where

TSTF(z) :=
H1(z)

1−H2(z)
, TNTF(z) :=

1

1−H2(z)
.

We call TSTF(z) and TNTF(z) the signal transfer function
(STF) and the noise transfer function (NTF), respectively.
For a conventional first order ΔΣ modulator, the loop filters
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Fig. 2. Linearized model for ΔΣ modulator

are given by

H1(z) =
z

z − 1
, , H2(z) = −

1

z − 1
. (1)

Then we have y = u+(1−z−1)n, and TNTF(z) = 1−z−1 is
a highpass filter. This is a reason for setting the accumulator
1/(z − 1) in the loop. By this, the quantization noise is mod-
ulated to high frequencies, and if the input signal u contains
few high frequency components, we can separate the noise n
from the output signal y by an appropriate lowpass filter. To
sum up, the loop filter H(z) plays a noise-shaping role in ΔΣ
modulators.

Before discussing an optimal design of the loop filter, we
discuss the stability of ΔΣ modulators in the next section.

3. CHARACTERIZATION OF LOOP FILTERS

In this section, we first characterize all H(z)’s which stabilize
the linearized model shown in Fig. 2, and then we consider
the stability of the nonlinear system in Fig. 1. A necessary
condition that a ΔΣ modulator is stable is that its linearized
model is internally stable. The converse is generally not true,
that is, even if the linearized model is stable, the nonlinear
system in Fig. 1 can be unstable.

We first characterize the filter H(z) which internally sta-
bilizes the linearized feedback system. All stabilizing filters
are characterized as follows [3].

Lemma 1. The linearized feedback system in Fig. 2 is well-
posed and internally stable if and only if

H1(z) =
R1(z)

1 + R2(z)
, H2(z) =

R2(z)

1 + R2(z)
,

R1(z) ∈ S, R2(z) ∈ S′,

(2)

where S is the set of all stable, causal, real-rational transfer
functions, and S′ := {R ∈ S : R is strictly causal}.

By using these parameters R1 ∈ S and R2 ∈ S
′, we have

TSTF(z) = R1(z), TNTF(z) = 1 + R2(z),

and the input/output equation of the system in Fig. 2 is given
by

y = R1u + (1 + R2)n. (3)

R1 Q

R2

yψu +

+

− +

Fig. 3. Structure of ΔΣ modulator with design parameters
R1 ∈ S and R2 ∈ S

′

For example, the conventional modulator in (1) has R1(z) =
1 ∈ S and R2(z) = −z−1 ∈ S′.

By (3), the structure of the ΔΣ modulator with the design
parameters R1 ∈ S and R2 ∈ S

′ is shown in Fig. 3. By this
block diagram, we can interpret the filter R1 as a pre-filter to
shape the frequency response of the input signal, and R2 as a
feedback gain for the quantization noise Qψ − ψ.

Next, we discuss the stability of nonlinear ΔΣ modulators
in Fig. 1. We here assume the following.

Assumption 1. 1. The linearized model is stable. That is,
the filterH(z) = [H1(z), H2(z)] satisfies (2).

2. There exist real numbersM > 0 and δ > 0 such that if
|ψ| ≤M then |Qψ − ψ| ≤ δ.

For example, the uniform quantizer with step size 2δ and
no-overload input range [−M, M ] (see section 2.1 of [1]) sat-
isfies the second assumption.

Under these assumptions, we have the following lemma.

Lemma 2. Assume Assumption 1. If |ψ(0)| ≤ M and
‖r1‖1‖u‖∞ + ‖r2‖1δ ≤ M then for all k ≥ 0, we have
|(Qψ)(k)−ψ(k)| ≤ δ and |ψ(k)| ≤ M , where r1 and r2 are
respectively the impulse responses of R1 and R2, and ‖ · ‖1
and ‖ · ‖∞ are respectively the �1 and �∞ norm of signals.

Proof. The proof uses the technique discussed in section
4.2.2 of [1]. We omit the proof.

This lemma gives a sufficient condition so that the ampli-
tude of the input ψ of the quantizer Q is always less than the
saturation level M of Q. This property is said to be of no-
overload, and if this is satisfied a ΔΣ modulator is said to be
stable [1]. We here consider the stability more precisely. We
introduce a state space model of the ΔΣ modulator shown in
Fig. 1, and analyze the stability in the state space.

Let state space equations of the system in Fig. 1 be as
follows.

x(k + 1) = Ax(k) + Buu(k) + Bnn(k),

ψ(k) = Cx(k) + Du(k),

n(k) = (Qψ − ψ)(k).
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Consider the ideal state xI(k), which is the state when
there is no quantization, that is, when Q is identity. Define the
state-space error e := x − xI . Then, we have the following
theorem.

Theorem 1. Suppose that the ΔΣ modulator in Fig. 1 satis-
fies Assumption 1. If |ψ(0)| ≤ M and

‖r1‖1‖u‖∞ + ‖r2‖1δ ≤ M (4)

then for all k ≥ 0,

|e(k)| ≤ βk := δ

k−1∑
i=0

‖AiBn‖.

Proof. By using the inequality |Ax| ≤ ‖A‖|x| for a vector x
and a matrix A, and by Lemma 2, the theorem can be easily
proved. We omit the proof.

By this theorem, when a ΔΣ modulator satisfies the con-
dition in Theorem 1, the quantization error e(k) in the state
space is bounded by βk. This bound is finite for all k ≥ 0
and β∞ := limk→∞ βk is also finite, since the matrix A is
Schur-stable 1 by Assumption 1.1. As a result, the state x(k)
is also bounded, and we can conclude that the system is stable
in a weak sense (i.e., bounded but not guaranteed to converge
to zero).

Assuming that ‖r1‖1 = 1, the condition (4) can be de-
scribed by the H∞ norm of R2, that is, ‖R2‖∞ ≤ C where
C > 0 is a constant (see [3]). This means that to guarantee
the stability one cannot arbitrarily increase the feedback gain
‖R2‖∞. This property is due to the nonlinear nature of ΔΣ
modulators.

4. OPTIMAL LOOP FILTER DESIGN VIA
GENERALIZED KYP LEMMA

In this section, we propose an optimal design of the loop filter
H(z) by using the parameterization in Lemma 1. For sim-
plicity, we assume R1(z) = 1. This means that the STF is
assumed to be allpass. Then our problem is formulated as
follows.

Problem 1. Given Ω (0 < Ω < π) and γ > 0, find R2(z) ∈
S′ which satisfies

sup
ω∈[0,Ω]

|TNTF(e
jω)| < γ. (5)

In implementation, finite impulse response (FIR) filters
are often preferred, and hence we assume that R2(z) is FIR,
that is, we set

R2(z) =

N∑
k=0

αkz−k, α0 = 0.

1A matrix A is Schur-stable iff ρ(A) < 1 where ρ(A) is the spectral
radius of A.

Note that R2(z) is always in S′. We then introduce state-
space matrices {A, B, C(α)}, such that R2(z) = C(α)(zI −
A)−1B, where α =

[
α0 α1 . . . αN

]
,

A =

⎡
⎢⎢⎢⎢⎣

0 1 0
. . . . . .

. . . 1
0 0

⎤
⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ ,

and C(α) = [αN , αN−1, . . . , α1]. Then the inequality (5)
can be described as linear matrix inequalities (LMI) by using
the generalized KYP lemma [4].

Theorem 2. The inequality (5) holds if and only if there ex-
ist symmetric matrices Q > 0 and P such that the LMI (6)
(printed in the top of the next page) holds.

By Theorem 2, the optimal coefficients α1, . . . αN can be
obtained efficiently by standard optimization softwares, e.g.,
MATLAB (See [6]).

5. DESIGN EXAMPLE

In this section, we show examples of designing ΔΣ modula-
tors by the proposed method.

We here design the filter R2(z) which is an FIR filter with
12 taps, and set R1(z) = 1. The cut-off frequency Ω is
3π/32. The NTF 1+R2(z) is designed to have a zero at z = 1
to attenuate DC noise most, and also to satisfy the stability
condition ‖TNTF‖∞ < 1.5 (these constraints can be described
as linear matrix equality and inequality, see [3]). By this opti-
mization, we obtain the minimum value of γ = 6.48× 10−2

(−23.8 [dB]). Fig. 4 shows TNTF’s by the proposed method
and the first order ΔΣ modulator. The TNTF of our design
shows a lower gain in the low frequency and a higher gain in
the high frequency. The frequency response in Fig. 4 is that
of the linearized system shown in Fig. 2. To see the nonlin-
ear effect in the quantizer, we simulate responses against si-
nusoidal waves with various frequencies. The reconstruction
filter after the ΔΣ modulator is chosen to be H∞ optimal one
proposed in [3]. Fig. 5 shows NSR (Noise-to-Signal Ratio)
against sinusoidal waves. The NSR shows that our ΔΣ mod-
ulator shows a better response than the conventional one in
all frequencies. Fig. 6 and Fig. 7 shows outputs respectively
of proposed and conventional ΔΣ converters against a sinu-
soidal wave.

6. CONCLUSION

In this paper, we have propose a new design method of ΔΣ
modulators. We have characterized the all stabilizing loop fil-
ters for linearized model, and analyzed the stability of nonlin-
ear ΔΣ modulators. Then we have formulated our problem of
noise shaping in the frequency domain. By using generalized
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⎡
⎣

A�PA + QA + A�Q− P − 2Q cosΩ A�PB + QB C(α)�

(A�PB + QB)� B�PB − γ2 1
C(α) 1 −1

⎤
⎦ < 0. (6)

10−2 10−1 100−50

−40

−30

−20

−10

0

10

Normalized Frequency (rad/s)

M
ag

ni
tu

de
 (d

B
)

Ω/π

−23.8

Fig. 4. Frequency response of TNTF: proposed (solid line) and
conventional (dash)
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Fig. 5. NSR against sinusoidal waves: proposed (solid) and
conventional (dash)

KYP lemma, our design is reducible to an LMI optimization.
Design examples have shown efficiency of our method.
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