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ABSTRACT

This paper presents an efficient implementation of the

variable fractional-delay (VFD) filter, which is optimal in

the time-domain L-infinity norm. The proposed filter has

two stages. The first consist in computing the conventional

Lagrange interpolator from the signal samples, but weighted

using a set of fixed coefficients. And the second consists

in multiplying the result of the previous step by a smooth

function, which can be well approximated by a polynomial.

The paper includes a numerical evaluation of this interpolator

and a low-complexity, low-latency implementation based on

multiplications.

Index Terms— Interpolation, Bandlimited signals, FIR

digital filters, Timing circuits.

1. INTRODUCTION

The design of efficient variable fractional-delay (VFD) filters

is the subject of numerous papers [1, 2, 3, 4]. The key prob-

lem in this kind of filters is to achieve the desired frequency

response for any fractional delay with minimum complexity.

The usual solution approach is based on the Farrow structure

in any of its variants; (see [2, 3, 4] and references therein).

Recently, an alternative design method has been presented in

[4], which can be viewed as a modification of the conventional

Lagrange interpolator; (see [5, Sec. II]). Basically, it is based

on computing the Lagrange interpolant of the product of the

signal with a fixed function, and then solving for the signal

value. The purpose of this paper is to show that the optimal in-

terpolator in the time-domain L∞ norm, which was derived in

[6], is also a modified Lagrange interpolator of the type in [4],

and to propose an efficient VFD filter implementation based

on it, which is division-free. The use of the time-domain L∞

norm is motivated by the fact that bounded band-limited sig-

nals are, actually, polynomials but of infinite degree. This

leads to simple and efficient interpolation structures. Besides,

if the interpolation error is bounded in the norm L∞, then it

is also bounded in any norm Lp, 1 ≤ p < ∞.

The interpolation problem and the optimal solution in the

L∞ norm are stated in the next section. Then, in Sec. 3 it

is shown that this optimal solution is actually a weighted La-

grange interpolator. Sec. 4 presents the efficient VFD filter

based on the interpolator in Sec. 3. Finally, its performance

is analyzed is Sec. 5.

2. PROBLEM STATEMENT AND OPTIMAL
SOLUTION IN TIME-DOMAIN L∞-NORM

Consider a signal s(t) with spectrum in [−B/2, B/2] which is

sampled with period T following BT < 1. The usual method

to introduce a fractional time shift v in the sequence of sam-

ples s(pT ) is based on an FIR filter whose coefficients depend

on v. More precisely, the n-th sample s(nT ) is time-shifted

using the formula

s((n + v)T ) ≈
P∑

p=−P

s((n + p)T )ap(vT ), (1)

where the shift follows −1/2 ≤ v < 1/2. For simplicity,

this expression has been written in a non-causal way relative

to the index n, i.e., the last sample available at the filter input

has index n + P and not index n. This last index is irrelevant

for the selection of ap(vT ), given that it can be assumed the

interpolated signal is z(t) ≡ s(nT +t). Thus, for the selection

of a(vT ), it is allowed to set n to zero and replace vT with

the time variable t, |t/T | ≤ 1/2,

s(t) ≈
P∑

p=−P

s(pT )ap(t). (2)

The coefficients ap(t) in this formula are usually optimized

using frequency domain criteria, i.e., by minimizing the in-

terpolation error for the set of phasors ej2πft with f in the

band [0, B/2]. However, this kind of design does not give

any bound on the interpolation error for the case in which

s(t) cannot be regarded as a finite-energy signal. Besides, it

does not suggest any efficient way to evaluate the coefficients

ap(v).
An alternative approach to this problem is to attempt to

minimize the interpolation error uniformly in the time do-

main instead of in the frequency domain, assuming that s(t) is
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bounded by a constant As, |s(t)| ≤ As, but not necessarily of

finite energy. Mathematically, this approach is much harder

than the usual FIR filter design above but, luckily, it was al-

ready solved in [6]. This reference is not cited in the recent

literature, despite containing fundamental results on this in-

terpolation problem. In [6], it was shown that the optimal

interpolator in the time-domain L∞ norm is

s(t) ≈
P∑

p=−P

s(pT )
φ(t)

φ′(pT )(t− pT )
(3)

where φ(t) is a specific band-limited signal with spectrum

in [−B/2, B/2]. It was also demonstrated in [6] that φ(t)
is closely related with a variational problem involving band-

limited signals with zeros at the sampling points pT , −P ≤
p ≤ P . In short, let S denote the set of signals s(t) fulfilling

the following conditions:

• s(t) is real and its spectrum lies in [−B/2, B/2].

• |s(t)| ≤ 1 for any t.

• s(pT ) = 0 for −P ≤ p ≤ P .

Then, for a fixed instant t′, t′ �= pT , −P ≤ p ≤ P , there is

a unique signal b(t) in S whose value at t′ is maximum over

all signals in S,

b = arg max
s∈S

s(t′). (4)

Besides, it turns out that b(t) is the same signal for any t′

in ta < t′ < tb, t′ �= pT , where ta and tb are two specific

instants following ta < −PT and tb > PT . The optimal

kernel in (3) is then

φ(t) = b′(t)L(t)/M(t), (5)

where M(t) is a polynomial of degree 2P with real roots

M(t) ≡
P−1∏

p=−P

t−mp, (6)

Actually, mp is the only root of b′(t) in [pT, (p + 1)T ].
Fig. 1 shows the signal b(t) for B = 0.8/T and P = 8.

Note that since b(t) is zero at the sampling points, this signal

is not even detected by any interpolator whose input data is

the set of samples at t = pT . Besides, it was demonstrated in

[6] that |b(t)| is a lower bound on the error of any interpolator

whose input is the set of samples at pT , −P ≤ p ≤ P , and

that this lower bound is attained by the interpolator in (3) with

φ(t) given in (5). This is true for any t lying between ta and

tb, where ta is the largest t following t < −PT and |b(t)| =
1, and tb is the smallest t following t > PT and |b(t)| = 1.

Fig. 2 also depicts b(t), but enlarging a shorter time

range. Note that the maxima of |b(t)| increase only slightly

as |t| departs from zero. Thus, the interpolator delivers accu-

rate approximations to the input signal for time ranges with

length much larger than T . This is in contrast with the usual

FIR designs in which the variation range of the fractional

time shift is T .
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Fig. 1. Signal maximizing the interpolation error, b(t).
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Fig. 2. Signal maximizing the interpolation error, b(t).

3. THE OPTIMAL INTERPOLATOR VIEWED AS A
WEIGHTED LAGRANGE INTERPOLATOR

The optimal interpolator in the previous section can be viewed

as the conventional Lagrange interpolator, but applied to the

product of s(t) with a specific signal, [5, Sec. 2]. To see

this note that (3) has the form of the conventional Lagrange

interpolator with φ(t) in place of the Lagrange polynomial

L(t),

L(t) ≡
P∏

p=−P

t− pT. (7)

Actually, since φ(t) has a zero at pT for −P ≤ p ≤ P , it is

possible to factor out L(t), i.e.,

φ(t) = L(t)g(t), (8)

where the spectrum of g(t) also lies in [−B/2, B/2]. Now,

since φ′(pT ) = L′(pT )g(pT ) due to L(pT ) = 0, Eq. (3) can

be written as

s(t) ≈ g(t)
P∑

p=−P

s(pT )
g(pT )

L(t)
L′(pT )(t− pT )

. (9)
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This formula shows that the conventional Lagrange in-

terpolator is optimal, provided that its input samples are

s(pT )/g(pT ) instead of s(pT ), where g(pT ) are fixed pa-

rameters, and provided the result is multiplied by the fixed

function g(t).

4. EFFICIENT IMPLEMENTATION OF THE
INTERPOLATOR WITH NO DIVISIONS

The formula in (9) is a Lagrange interpolator that is applied

to the samples s(pT )/g(pT ) and then weighted using g(t).
Thus, any implementation of the Lagrange interpolator can

be modified to deliver (9), like the variable fractional delay

(VFD) filter designs in [3, 4]. Conversely, the results in the

sequel are applicable to the conventional Lagrange interpola-

tor simply by setting g(t) = 1. The implementation of (9) that

involves the smallest number of arithmetic operations seems

to be that in [4]. In this reference the factor g(t) in (9) is ap-

proximated using the square of a polynomial, which can be

efficiently evaluated using Horner’s algorithm. Regarding the

summation in (9), the implementation in [4] involved one di-

vision per summation coefficient. However, the summation

can be computed using only multiplications as shown in the

sequel. For simplicity, the dependence on t will be omitted in

the symbols defined.

The formula in (9) can be written as

s(t) ≈ g(t)
P∑

p=−P

s(pT )·

1
g(pT )L(pT )

p−1∏
k=−P

(t− kT )
P∏

r=p+1

(t− rT ).

(10)

Next, the factor g(t) can be approximated by the square of

a polynomial in t, denoted g̃, using the method in [4]. The

factor

wp ≡ [g(pT )L(pT )]−1 (11)

is constant in t and can therefore be pre-computed. Finally,

the products in (10),

bp ≡
p−1∏

k=−P

(t− kT ), cp ≡
P∏

r=p+1

(t− rT ). (12)

can be recursively computed using the formulas

bp =
{

1 if p = −P
bp−1(v − p + 1) if − P < p ≤ P

(13)

and

cp =
{

1 if p = P
cp+1(v − p− 1) if − P ≤ p ≤ P − 1 (14)

In summary, the interpolator in (10) can be written as

Fig. 3. .Tree structure for the computation of (−P, P − 1)
with P = 3 The asterisk blocks implement the operation in

(17).

s((n + v)T ) ≈ g̃
P∑

p=−P

s(pT )wpbpcp, (15)

and Eqs. (10) to (14) show that the computational burden is

O(P ). More precisely, if Q ≈ P/3, the number of multipli-

cations per interpolated value is 10.3P . Thus, the interpolator

roughly involves 5.15 multiplications per coefficient. The la-

tency of this procedure is fixed by the recursive evaluation of

(13) and (14). Nevertheless, these coefficients can be obtained

with latency 1 + �log2 P � using the method in the following

sub-section.

4.1. Low-latency computation of bp and cp

For two integers p and q, p ≤ q, let (p, q) denote the sequence

of products bp, bpbp+1, . . . , bpbp+1 . . . bq. Also, let (p, q)[n]
denote the n-th element of the sequence (p, q), that is,

(p, q)[n] =
p+n−1∏

k=p

bk. (16)

If p ≤ r < q the sequence (p, q) can be constructed from

(p, r) and (r+1, q) by concatenating (p, r) with (r+1, q) but

multiplied by the last element of (p, r), i.e., (p, r)[r− p + 1].
If the braces “{·, ·}” denote concatenation, this operation can

be concisely written as

(p, q) = {(p, r), (p, r)[r − p + 1] · (r + 1, q)}, (17)

where the product “·” of the scalar (p, r)[r− p + 1] with (r +
1, q) is to be performed element-wise. The relationship (16)

suggests the tree structure shown in Fig. 3 for the computation

of (−P, P − 1) with low latency. In this figure the asterisk

block denotes the application of (16). This way it is possible

to obtain all coefficients bp with latency 1 + �log2 P �.
The computation of cp would be done in the same way.
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t for the conventional Lagrange and minimax FIR interpola-

tors, and for the interpolator in (9), [g(t)-weighted interpola-

tor].

5. ERROR PERFORMANCE

For a given interpolator, let ε(t) denote the error function

ε(t) ≡ max
f∈[−B/2,B/2]

|ej2πft − φ(f, t)|, (18)

where φ(f, t) is the value delivered by the interpolator when

its input is s(t) = ej2πft. Fig 4 shows ε(t) for the interpolator

in (9), [g(t)-weighted], for the minimax FIR interpolator for

each specific time shift t, and for the conventional Lagrange

interpolator, (B = 0.8/T , P = 8). The curve for the inter-

polator in (9) is at most 7 dB above that of the minimax FIR

interpolator. Observe the significant effect of weighting the

Lagrange interpolator using the function g(t).
Next, let δ(f) denote the maximum error error in the in-

terpolation of φ(f, t) with |t/T | ≤ 1/2,

δ(f) ≡ max
|t/T |≤1/2

|ej2πft − φ(f, t)|. (19)

Fig. 5 shows δ(f) for the previously-mentioned interpolators.

The effect of the weighting is to turn the maximally-flat re-

sponse of the Lagrange interpolator into an almost equi-ripple

response.

6. CONCLUSIONS

In this paper, the performance and the efficient implementa-

tion of the optimal interpolator in the time-domain L∞ norm

has been analyzed. It has been shown that this interpolator

can be implemented by means of a simple modification of the

conventional Lagrange interpolator. Its performance is close

to that of the minimax FIR interpolator for every possible time

shift, and it transforms the maximally-flat response of the La-

grange interpolator into an equi-ripple one, just by weighting
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Fig. 5. Maximum error for time shift in −T/2 ≤ t < T/2
versus frequency.

the signal samples using fixed coefficients, plus a final scaling

using a function of the time shift. Finally, an efficient evalu-

ation procedure with low latency and based only on multipli-

cations has been presented.
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