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ABSTRACT

We introduce a missing data recovery methodology based on
a weighted least squares iterative adaptive approach (IAA).
The proposed method is referred to as the missing-data IAA
(MIAA) and it can be used for uniform or non-uniform sam-
pling as well as for arbitrary data missing patterns. MIAA
uses the IAA spectrum estimates to retrieve the missing data,
based on a spectral least squares criterion similar to that used
by IAA. Numerical examples are presented to show the effec-
tiveness of MIAA for missing data recovery. We also show
that MIAA can outperform an existing competitive approach,
and this at a much lower computational cost.

Index Terms— Missing Data Recovery, Spectral Estima-
tion, Iterative Adaptive Approach, Weighted Least Squares

1. INTRODUCTION

Missing data problems occur in a wide range of applications
(see, e.g., [1, 2, 3, 4, 5, 6]) and several studies have been car-
ried out to investigate these problems (see, e.g., [5, 6, 7] and
the references therein). For gapped-data sequences, where
the missing samples appear clustered in groups, a competi-
tive approach is the gapped-data amplitude and phase estima-
tion (GAPES) algorithm [3]. GAPES works well for gapped
data but not so well for arbitrary missing data patterns. The
missing-data amplitude and phase estimation (MAPES) ap-
proach was developed using the expectation maximization
algorithm [8]. MAPES works well even in the case where
the missing samples occur at arbitrary positions of a uni-
form sampling grid. However, the performance of MAPES
degrades relatively quickly when the percentage of missing
samples increases. Moreover, the computational complexity
of MAPES is rather high.
A central issue in the missing data recovery approaches

mentioned above, as well as for the approach of this paper,
is the spectral estimation from the available samples [9]. Re-
cently, a non-parametric and user parameter free weighted
least squares based iterative adaptive approach (IAA) was
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proposed for spatial spectral estimation (a.k.a. array pro-
cessing) [10]. IAA can be used with few or even a single
snapshot and with arbitrary array geometries. In this paper,
we show how IAA can be extended to deal with the missing
temporal data recovery problem; the IAA-based missing data
recovery approach is referred to as MIAA. First MIAA uses
IAA to obtain an accurate spectral estimate from the given
samples. Then a similar spectral least squares criterion to that
employed by IAA is used with the IAA spectrum estimate to
recover the missing samples. MIAA works for arbitrary data
missing patterns as well as for uniform or non-uniform sam-
pling. Moreover, MIAA can be used for both interpolation
and extrapolation of data sequences.

2. PROBLEM FORMULATION

Let

yg =

⎡⎢⎣ yt1

...
ytN

⎤⎥⎦ , ym =

⎡⎢⎣ yt̄1
...

yt̄N̄

⎤⎥⎦ , y =

[
yg

ym

]
, (1)

where yg is the vector of available (or given) samples, ym is
the vector of missing (or desired) samples, {tn} denote the
sampling times of available samples, and {t̄n̄} are the sam-
pling times of the missing samples. Usually {t̄n̄} are inter-
leaved with {tn}, so that the missing data recovery is basi-
cally an interpolation problem. However, we do not need to
make this assumption as MIAA can be used for both interpo-
lation and extrapolation problems. The problem of interest is
to recover (or, rather, estimate) ym from yg .

3. MIAA

The available andmissing samples are assumed to be complex-
valued. The modification of MIAA to deal with real-valued
missing data recovery problems is relatively straightforward
and is not discussed herein.

3.1. Using IAA for Spectral Estimation from Given Data

MIAA first uses IAA [10] for spectral estimation from the
given data vector yg . LetK denote the number of grid points
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in the frequency domain and let {ωk}
K
k=1 be the correspond-

ing frequencies; usuallyK is chosen to be quite large and the
frequency grid of interest {ωk} is uniform. Let

ag(ωk) =

⎡⎢⎣ ejωkt1

...
ejωktN

⎤⎥⎦ ,am(ωk) =

⎡⎢⎣ ejωk t̄1

...
ejωk t̄N̄

⎤⎥⎦ ,

a(ωk) =

[
ag(ωk)
am(ωk)

]
,A = [a(ω1) · · ·a(ωK)] , (2)

where ag(ωk) and am(ωk) are the Fourier vectors corre-
sponding to yg and to ym at frequency ωk. The data vector y
can be modeled as:

y = Aα, (3)

where α = [α(ω1) . . . α(ωK)]T is the complex-valued spec-
tral amplitude vector for the chosen frequency grid {ωk}, and
(·)T denotes the transpose.
A possible noise term of the data vector is not modeled

explicitly but implicitly via its contribution to the amplitude
vectorα. We also note that in many applications, the vectorα
in (3) is “almost sparse” in the sense that, while few elements
of it (if any) are equal to zero, many elements are quite small
and only a small number of elements have significant magni-
tudes. This type of application suits IAA best (see, e.g., [10]),
and it will be the one that we will focus on in this paper.
Let

Pk = |α(ωk)|2, k = 1, · · · , K, (4)

denote the data power at frequency ωk. For each frequency
ωk in the available data, the interference covariance matrix
can be defined as:

Qg(ωk) = Rg − Pkag(ωk)aH
g (ωk), (5)

where (·)H denotes the conjugate transpose andRg is the co-
variance matrix of the given data, i.e.,

Rg =
K∑

k=1

Pkag(ωk)aH
g (ωk). (6)

By using a weighted least squares criterion, the spectral
estimation problem at frequency ωk can be formulated as:

min
α(ωk)

[yg − α(ωk)ag(ωk)]
H

Q−1
g (ωk) [yg − α(ωk)ag(ωk)] .

(7)
The solution to this optimization problem is given by:

α̂(ωk) =
aH

g (ωk)Q−1
g (ωk)yg

aH
g (ωk)Q−1

g (ωk)ag(ωk)
. (8)

By using the matrix inversion lemma (see, e.g., [9]), it can be
shown that:

aH
g (ωk)Q−1

g =
aH

g (ωk)R−1
g

1 − PkaH
g (ωk)R−1

g ag(ωk)
. (9)

Therefore, we can replace Q−1
g (ωk) in (8) by R−1

g to avoid
computingQ−1

g (ωk) for each ωk:

α̂(ωk) =
aH

g (ωk)R−1
g yg

aH
g (ωk)R−1

g ag(ωk)
. (10)

Note that Rg depends on the very spectral amplitudes
{α(ωk)}K

k=1 that we want to estimate. Thus (10) must be
implemented in an iterative manner. The initialization of IAA
can be done by setting Rg in (10) to the identity matrix I,
which gives the least squares (LS) estimate of α(ωk).

3.2. Missing Data Recovery

From the estimated amplitude spectrum {α̂(ωk)}, we can re-
cover the missing data by using a least squares criterion some-
what similar to that used by IAA. Depending on the way in
which this spectral fitting least squares criterion is defined, we
obtain two different versions of MIAA, as explained below.

3.2.1. MIAA-1

This version estimates the missing data by fitting the IAA-like
spectral estimates that would be obtained from ym, if it were
available, to {α̂(ωk)} given by IAA (see (10)):

min
ym

K∑
k=1

∣∣∣∣ aH
m(ωk)R−1

m ym

aH
m(ωk)R−1

m am(ωk)
− α̂(ωk)

∣∣∣∣2 , (11)

where Rm is similarly defined to Rg in (6) but with Pk re-
placed by |α̂(ωk)|2 and ag(ωk) replaced by am(ωk), k =
1, · · · , K . Let

hH
k =

aH
m(ωk)R−1

m

aH
m(ωk)R−1

m am(ωk)
. (12)

The solution to (11) is straightforward:

ŷm =

(
K∑

k=1

hkh
H
k

)
−1 [

K∑
k=1

α̂(ωk)hk

]
. (13)

3.2.2. MIAA-2

MIAA-1 fits the spectral estimate that would be obtained from
the N̄ missing data samples, if they were available, to the IAA
spectral estimate obtained from theN available data samples.
However, without increasing the computational burden too
much, we could fit the spectral estimate associated with both
missing and available data to the spectrum estimated from the
available data, which should presumably improve the missing
data estimation accuracy, especially when N̄ � N . To pur-
sue this idea, define the covariance matrix estimate for both
the missing and available data as:

R =

K∑
k=1

P̂ka(ωk)aH(ωk), (14)
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where P̂k is obtained from the IAA estimate in (10). Then ym

is estimated as the solution to the following spectral fitting LS
problem:

min
ym

K∑
k=1

∣∣∣∣ aH(ωk)R−1y

aH(ωk)R−1a(ωk)
− α̂(ωk)

∣∣∣∣2 . (15)

Let
aH(ωk)R−1

aH(ωk)R−1a(ωk)
� [hH

gk
hH

mk
], (16)

where the dimensions of hgk
and hmk

conform with those of
yg and ym. Using this notation, the objective function in (15)
can be rewritten as:

min
ym

K∑
k=1

∣∣hH
mk

ym + [hH
gk

yg − α̂(ωk)]
∣∣2 . (17)

The minimization of (17) with respect to ym gives:

ŷm =

(
K∑

k=1

hmk
hH

mk

)
−1

K∑
k=1

hmk
[α̂(ωk) − hH

gk
yg]. (18)

4. NUMERICAL EXAMPLES

This section illustrates the effectiveness of MIAA as a miss-
ing data recovery algorithm and compares the performance
of MIAA and MAPES (more exactly the MAPES-EM1 algo-
rithm in [7] [8]) for arbitrary missing data patterns.
The signal we consider consists of 4 complex-valued si-

nusoids located at f1 = 0.05 Hz, f2 = 0.065 Hz, f3 = 0.27
Hz, f4 = 0.28 Hz with complex amplitudes α1 = α2 =
α3 = 1, α4 = 0.5. The data is corrupted by a zero-mean cir-
cularly symmetric complex Gaussian white noise with vari-
ance σ2

n = 0.01. The complete data sequence (uniformly
sampled at a rate of 1 sample per sec) has 100 samples (i.e.,
N + N̄ = 100 and therefore the percentage of missing sam-
ples is N̄%). IAA, implemented by setting K = 1000 and
the iteration number to 15, is used to obtain a spectrum es-
timate for MIAA. The locations of the missing samples are
generated randomly in the interval [1, 100], consequently, our
numerical examples involve both interpolation and extrapola-
tion problems.
We let N̄ vary from 5 to 85. A total of 50 Monte-

Carlo trials are performed. The noise, initial sinusoidal
phases and data missing patterns vary independently from
one trial to another. Define the average mean-squared er-
ror (AMSE) of the missing data estimates as AMSE(N̄) =
1
N̄

E
(
||ym − ŷm||2

)
, where || · || denotes the Euclidean norm

and E(·) represents the average over the Monte-Carlo runs.
The AMSE results are presented in Fig. 1(a). When N̄ is
small, such as N̄ < 20, MIAA-2 outperforms MIAA-1 sig-
nificantly. This observation is in line with the remark made in
the previous section on the way in which the fitting criteria of
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Fig. 1. The performance comparison between MIAA-1, MIAA-2
and MAPES. (a) AMSE of estimated missing data vs. N̄ (note that
the noise floor is −20 dB), and (b) average computation time.

MIAA-1 and of MIAA-2 are defined. Both MIAA methods
work well for 20 ≤ N̄ ≤ 60. For N̄ between 60 and 80,
MIAA-1 degrades more quickly than MIAA-2. The perfor-
mance of both methods degrades significantly for N̄ > 80, as
in such a case N = 100 − N̄ < 20 is too small for IAA to
provide an accurate spectrum estimate. Regarding the com-
parison with MAPES, the performance of MAPES is worse
than that of MIAA-2, especially for N̄ ≥ 70.
Fig. 1(b) compares the average computer time required

by the two MIAA methods. Our simulations show that the
average time required by MAPES varies from 250 to 320 sec,
which is more than 100 times larger than the time required
by the MIAA methods. Consequently, the average time for
MAPES is not plotted in Fig. 1(b). We have observed that
the time needed by the missing data recovery step of MIAA-1
(excluding the time needed by IAA) increases as N̄ increases,
while that needed by MIAA-2 is almost constant. This ob-
servation, together with the fact that the computation time
needed by IAA decreases with N̄ , explains why the overall
difference between the times needed by the two MIAA meth-
ods diminishes as N̄ increases, as shown in Fig. 1(b). Note
that MIAA-2 is slightly more expensive computationally than
MIAA-1, but the (small) extra computation time required by
MIAA-2 is completely justified by its better performance.
The missing samples and the available data, the estimated

amplitude spectra, and the estimated missing samples for one
Monte-Carlo trial are presented in Figs. 2-4 for N̄ = 80. This
example shows both interpolation and extrapolation of data
sequence. Note, once again, that the MIAA methods, espe-
cially MIAA-2, outperformMAPES significantly.

5. CONCLUSIONS

We have presented a new algorithm, referred to as MIAA, for
missing data recovery. MIAA first uses IAA for spectral es-
timation from the available data samples and then estimates
the missing data samples by employing the IAA spectral es-
timate in a least squares spectral fitting criterion. Numerical
examples have been presented to show that MIAA is an ef-
fective approach that can be used for arbitrary missing data
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Fig. 2. The modulus of the original data sequence, and the missing
and available data samples.
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Fig. 3. Spectrum estimates obtained via IAA and the least squares
approach. The circles represent the true line spectrum peaks. (a)
IAA for the complete data, (b) IAA for the available data, (c) the
least squares estimate for the available data. (d) IAA based on both
available data and missing data estimated by MAPES.

patterns. Of the two versions of MIAA that we introduced
in this paper, MIAA-2 appears to be preferable in most cases
as it offers a better recovery performance than MIAA-1 at a
reasonable additional computational cost. Finally, we remark
on the fact that MIAA has the desirable feature of not altering
the available samples during the missing data recovery pro-
cess. This is in stark contrast with what other data recovery
methods do, which also modify the given samples.
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