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ABSTRACT

In this paper, we propose the concept of ”doping watermark-
ing”, whose principle is to add an imperceptible noise to an
host signal in order to improve its properties. Especially, our
aim is to reduce the spectral support of the probability den-
sity function (PDF) of an audio signal in order to match the
conditions of the quantization theorem. In this context, we
develop a specific audiowatermarking algorithm and test its
performance on real audio signals. This watermark allows to
recover the PDF of a digital signal from a sub-quantized ver-
sion of the signal, with very low error.

Index Terms— quantization theorem, sub-quantization,
audiowatermarking, speech and audio processing.

1. INTRODUCTION

The quantization theorem [1] states that, if the probability
density function (PDF) of a sampled signal x is spectrally
band-limited, it is possible to recover it from the PDF of the
quantized signal. Like in the sampling theorem, a sufficient
condition for the recovery is that the quantization ”frequency”
(inverse of the quantization step q) of the signal is two times
greater than the maximal frequency (νmax) of the character-
istic function of x: 1

q
≥ 2νmax

If the conditions of the theorem are not met, the support
of the characteristic function should be artificially reduced.
In this purpose, we propose to transform the distribution of
an audio signal by the way of ”doping watermarking”. The
principle is that an inaudible noise added to the original signal
makes the watermarked signal match a target histogram that
meets the condition of the quantization theorem.
The idea of doping watermarking was inspired by [2]

and [3] in a context of acoustic echo cancellation. In [2],
an inaudible noise was added to the signal to reduce the
ill-conditioning of the covariance matrix of the signals in
the case of multiple loudspeakers. [3] showed that a water-
mark (actually any piecewise stationary signal) added to the
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audio signal stationnarizes the latter, which leads to better
performance in echo cancellation.
[4] showed the interest of the doping watermarking for

non-linear system identification. Adding a noise that makes
the PDF of the audio signal Gaussian enhances the condition-
ning of the matrix to be inverted in the optimal identification.
In the following, we will adapt the quantization theorem

to the case of the sub-quantization of an already quantized
signal. In the third section, we will propose a specific water-
marking algorithm to meet the conditions of the quantization
theorem. The PDF recovery with or without watermarking
will be compared for real audio signals in section 4.

2. SUB-QUANTIZATION OF QUANTIZED SIGNALS

Widrow showed that quantization is equivalent to an area
sampling of the original continuous PDF [1]. Area sampling
means : first convolving the original PDF fx with a uniform
pulse function of width q and then multiplying the result of
convolution with a Dirac impulse carrier (whose delays are
multiples of q), which gives the discrete PDF fx′ .
We adapted the operations of the classical area sam-

pling to the specific case of digital original signals that are
already quantized (discrete original PDF). We define the
sub-quantization of the digital signal x as the increase of its
quantization step q0. The new quantization step q1 is a mul-
tiple of q0. The sub-quantized signal is denoted xQ and the
sub-quantization rateK is given byK = q1

q0

In the following, according to the discrete formalism, the
index i in the expression f(i), where f is a PDF, stands for
iq0.
Sub-quantization with a factorK means rounding the val-

ues belonging to the discrete interval [nK − K
2 , nK + K

2 ] to
the value nK (n integer). The PDF of the sub-quantized sig-
nal fxQ(i) equals 0 for all i �= nK and :

fxQ(nK) =

�nK+ K

2
�∑

i=�nK−K

2
+1�

fx(i) (1)
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Fig. 1. Discrete area sampling of PDF of x: (a) original PDF
fx(i); (b) discrete rectangularfilter r(i);(c) impulse train e(i);
(d) final PDF fxQ(i)

As for the quantization theorem, in terms of PDF, sub-
quantization of the original signal leads to a discrete area sam-
pling, as illustrated in Figure 1 forK = 4:
1. Convolution of the original PDF fx(i) (Fig. 1a) by a

discrete rectangular filter r (Fig. 1b) :

r(i) =

�K

2
�∑

l=�− K

2
+1�

δ(i − l) (2)

2. Multiplication of the result of convolution by a uniform

(a)

(b)

(c)

(d)

−0.5 −0.25 0.0 0.25 0.5
0.0

2.0

4.0

−0.5 −0.25 0.0 0.25 0.5

−0.5 −0.25 0.0 0.25 0.5
0.00

0.25

−0.5 −0.25 0.0 0.25 0.5

Φx(ν)

R(ν)

E(ν)

ΦxQ(ν)

Fig. 2. Discrete area sampling in the spectral domain

impulse train e (Fig. 1c) :

e(i) =

+∝∑
n=−∝

δ(i − Kn) (3)

The PDF fxQ(i) of the sub-quantized signal (Fig 1d) is :

fxQ(i) = [fx(i) ∗ r(i)].e(i) (4)

The discrete time Fourier transform (DTFT) of the PDF
is known as the ”characteristic function” Φ(ν). From (4), we
obtain :

ΦxQ(ν) = [Φx(ν)R(ν)] ∗ E(ν) (5)
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where, from relations (2) and (3) :

R(ν) =

⎧⎪⎨
⎪⎩

K if ν ∈ Z

sin(πKν)
sin(πν) exp(jπν) ν /∈ Z andK even

sin(πKν)
sin(πν) ν /∈ Z andK odd

(6)

E(ν) =
1

K

∝∑
n=−∝

δ(ν −
n

K
) (7)

As illustrated in Figure 2, sub-quantizing with a factorK
is equivalent, in the spectral domain, to replicating K times
the characteristic function in [− 1

2 ; 1
2 ], with a periodicity of

1/K . This leads to the:
Sub-quantization theorem: if the characteristic function

of a quantized signal x is equal to zero for |ν| > 1
2K

in
[− 1

2 ; 1
2 ], then the PDF of x can be derived from that of the

signal xQ resulting from the sub-quantization of x with a fac-
torK .
The original PDF is recovered through low-pass filtering

of fxQ with a cut-off frequency 1
2K
and division by R(ν) on

[− 1
2K

; 1
2K

] (note that R(ν) �= 0 ∀ |ν| < 1
K
). Thus,

Φx(ν) = ΦxQ(ν)G(ν) (8)

whereG(ν) = 1/R(ν) for |ν| < 1
2K
, 0 otherwise.

3. REDUCING THE SUPPORT OF THE
CHARACTERISTIC FUNCTION

Unlike to the previous example, the characteristic function
of a digital audio signal generally spreads over the whole
normalized frequencies intervall (νmax = 1

2 ). The sub-
quantization implies the reduction of the spectral support, in
order to meet the Widrow condition.
The reduction of the spectral support means a low-pass

filtering of fx(i), with a cut-off frequency νc = 1
2K
. Figure 3

shows the target low-pass PDF for a speech signal of duration
3 s, sampled at Fs = 8000 Hz and coded with 16 bit/sample,
forK = 4.
In order to make the signal follow the target filtered PDF,

we need to move the values of the samples, by addition of a

noise that we will call doping watermark: z = x + w, where
w is the watermark and z the watermarked signal. The noise
w should be inaudible. One may expect w to be all the louder
as the target PDF is far from the original, so that νc cannot be
freely chosen.
Preliminary histogram normalization : the proposed algo-

rithm works with the histogram hx of a sequence x of length
N . The target histogram (filtered) htarget is rounded to in-
teger values so that its total number of samples equals to N .
Initially, z = x. The goal is that the histogram of z, hz , equals
to htarget.
Iterative histogram adjustment: then, for i = −2b−1 →

2b−1 − 1, where b is the number of coding bits :

• If hz(i) = htarget(i), the samples with value i do not
need to be moved.

• If hz(i) − htarget(i) = n > 0, we select randomly n
samples of z of value i. Each of those samples gets the
value i + 1, so that hz(i) = htarget(i) and hz(i + 1) =
hz(i + 1) + n.

• If hz(i) − htarget(i) = −n < 0, we select randomly
n samples of z of value i + 1. Each of those samples
gets the value i. If hz(i + 1) < n, we select randomly
the missing samples among those of value i + 2, and
so on, until hz(i) = htarget(i). hz(j > i) decreases
according to the number of samples moved.

At the end of this algorithm, hz = htarget.
The noise w generated by the transformation of x into

z has to be inaudible, in other words masked by the audio
signal. This constraint of frequency masking is not integrated
in the proposed algorithm, which works in the PDF domain,
but is checked a posteriori, by comparing frame by frame
the spectrum of w to the masking threshold. The latter was
computed according to the Johnston model [5] for 32 ms
frames. The masking depends on the transformation imposed
to the PDF : the watermark is all the more audible as the sub-
quantization rate K is high. According to our experiments
on various signals, choosing K < 8 leads to an acceptable
masking. Figure 4 illustrates the masking in the case K = 4,
for one frame of the previous speech signal.
The audibility of the watermark was also assessed through

Signal to Watermark Ratio (SWR) and perceptual measures :
mean opinion score (MOS) predicted by PESQ [6] for speech
and objective difference grade (ODG) from PEAQ [7] for mu-
sic. See results in Table 1 for the same speech example and
a violin signal of duration 4 s, sampled at 44.1 kHz, coded
with 16 bit/sample. For the speech sequence, the watermark
is inaudible for K = 4. For the violin sequence, it is slightly
audible for both values ofK .
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Fig. 4. Frequency masking of the watermark

signal K SWR quality dKS(fx, f̂x) dKS(fz , f̂z)
×104

×104

speech 4 19.2 MOS: 4.14 69 4.3
8 15.7 MOS: 3.85 197 5.9

violin 4 30.0 ODG: -0.49 7.3 1.4
8 15.7 ODG: -0.52 13 1.3

Table 1. Audibility of the watermark and PDF recovery error,
according to the sub-quantization rateK

4. SUB-QUANTIZATION AND PDF RECOVERY

The original signal x and the watermarked signal z are sub-
quantized into xQ and zQ, respectively.
According to the sub-quantization theorem, the charac-

teristic function of z, Φz(ν), can be recovered without error
from that of zQ, ΦzQ(ν), using Eq. (8).
A recovery method in the PDF domain was proposed

by [8] in the case of continuous PDF, but it is based on a
differentiator, which is delicate to implement in the discrete
case. We propose the following process in the frequency
domain to avoid the temporal aliasing which may result from
the Discrete Fourier Transform (DFT).

• computing the DFT of G on 2b samples, then the in-
verse DFT on 2b+1 samples (zero-padding);

• computing the inverse DFT of fzQ on 2b+1 samples
(zero-padding);

• computing the estimation of the distribution of z :

f̂z = DFT [ΦzQG] (9)

We measured the dissimilarity between two PDF f and
f̂ through the Kolmogorov-Smirnov distance dKS(f, f̂). As
shown in Table 1, the watermark reduces significantly the re-
covery error. The improvement is lower for violin than for
the speech signal, because the original characteristic function
is less spread, so that the frequency aliasing caused by the
sub-quantization of the original signal is less critical.

5. CONCLUSION

We have formulated a discrete-to-discrete version of the quan-
tization theorem, adapted to the sub-quantization of quan-
tized signals. Since digital audio signals often not meet the
condition of the sub-quantization theorem, we have proposed
a doping-watermarking algorithm that reduces the spectral
band of the characteristic function. The inaudibility of the
watermark needs the targeted sub-quantization rate to be rea-
sonably low.
The proposed method allows to sub-quantize digital au-

dio signals and recover the original PDF with a very reduced
error. The watermarking algorithm may be improved through
integrating the inaudibility constraint in the process, instead
of checking it a posteriori. This may be achieved through
spectral shaping of the watermark, taking into account tem-
poral dependencies between samples of the audio signal.
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