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ABSTRACT
Given a network of N nodes with the i-th sensor’s observation
xi ∈ RM , the matrix containing all Euclidean distances among
measurements ||xi − xj || ∀i, j ∈ {1, . . . , N} is a useful description
of the data. While reconstructing a distance matrix has wide range
of applications, we are particularly interested in the manifold recon-
struction and its dimensionality reduction for data fusion and query.
To make this map available to the all of the nodes in the network,
we propose a fully decentralized consensus gossiping algorithm which
is based on local neighbor communications, and does not require the
existence of a central entity. The main advantage of our solution is
that it is insensitive to changes in the network topology and it is fully
decentralized. We describe the proposed algorithm in detail, study its
complexity in terms of the number of inter-node radio transmissions
and showcase its performance numerically.

Index Terms— Distributed computing, manifold estimation, dimen-
sionality reduction.

I. INTRODUCTION

Given a set of observation vectors xi ∈ RM , i ∈ {1, . . . , N}, the
process of determining the true structure of this data is a challenging
one. In most of the real world applications, the phenomenon of interest
generates data that are physically constrained to reside on a L < M
dimensional non-linear manifold rather than on the M dimensional
Euclidean space where all possible measurements lie, and therefore
the basic definitions of Euclidean distances or local neighborhoods
do not relate appropriately to the different data. Fortunately, in many
applications such as speech recognition, visual tracking and image clas-
sification, this manifold is continuously differentiable, i.e, smooth [1],
[2]. In this case, if the data are sampled finely enough over the
manifold, then each data point and its neighbors lie on or close to a K
dimensional hyperplane which is tangent to the manifold at a given data
point. Thus, the manifold distances on those local hyperplanes can be
approximated as Euclidean, and these distances can be patched together
to characterize the manifold of interest [3]. Similarly, dimensionality
reduction which aims to represent the set of observation xi ∈ RM in a
lower dimensional space such that internode similarities are preserved,
also utilizes the idea of linearity on the local neighborhoods [4], [5],
[6].

While the above algorithms ( [1]- [6]) perform sufficiently well on
real world data, they lack of a feature: decentralization. When the
observations are collected by several sensors which are geographically
separated, fusing all the observations to a central entity may not be
possible or practical. For this reason, Costa et.al. proposed a method
for the decentralized manifold estimation in the context of sensor
localization [7]. The proposed decentralized algorithm requires that ge-
ographically close sensors’ observations are also close on the manifold
(so that neighborhood distances can be estimated as Euclidean) from
which the observations are sampled. While such an assumption holds
true in the context of sensor localization, it is not valid generally when
other sensor modality are studied. For instance, in distributed camera
networks, physically close cameras may not record correlated data due
to angle differences and obstructions.

In this paper, we propose a fully decentralized method for the
reconstruction of the distance matrix of the sensor observations such
that the distance matrix will be available at all sensors. Our method is
based on the idea studied in [8] for the distributed construction of an
estimate of the correlation matrix. Once the full (observation) distance
matrix is constructed at all of the sensors, each sensor can decide
its local (manifold) neighborhood. The neighborhood and distance
information can then be used for non-linear dimensionality reduction
methods, such as ISOMAP [4], to estimate the geodesic distances over
the manifold.

In Section II, we discuss our decentralized method for the recon-
struction of the distance matrix at all sensors. In Section III, we utilize
our reconstruction method in the context of manifold reconstruction
and dimensionality reduction by integrating it to the ISOMAP method.
We conclude our study in Section IV.

II. DISTANCE MATRIX ESTIMATION
As mentioned in Section I, we are interested in the case where

a network of N sensors, each gathering a single M -dimensional
observation, i.e., xi ∈ RM , i ∈ {1, . . . , N}, aims to estimate the inter-
observation distances for the whole network. The sensors communicate
via a power limited wireless interface, that allows them to converse
only within a limited range R. We assume that the network is dense
enough to be strongly connected, i.e., there is a path of wireless links
(not necessarily single hop) between each node pair in the network.
We make the simplification of assuming that the communications
among the neighbors are two-way and noise free and that only nearby
interference can cause errors [9]. Denoting the geographical distance
between node i and node j as dij , the neighbor set of node i is
Ni = {j ∈ {1, . . . , N}|dij ≤ R}. We note that the neighborhood
definition is symmetric, i.e., if j ∈ Ni then i ∈ Nj . For any pairs of
nodes i, j ∈ {1, . . . , N}, the distance between the observations of node
i and node j is equal to ||xi − xj ||, where ||.|| denotes the L2 of its
argument. If we define an M × N matrix X = [x1, x2, . . . , xN ] and
the N × N positive definite and real matrix T = XT X, the internode
distance between node i and node j is equal to:

||xi − xj || =
√

xT
i xi + xT

j xj − 2xT
i xj

=
√

Tii + Tjj − 2Tij (1)

Therefore, reconstructing T is a sufficient condition for recovering the
inter-node observation distances. If the dimensionality M is very large,
seeking an alternative to the exchange of the raw data can be beneficial.
We note that eigenvalues of T are real and T is a positive definite
matrix. In the rest of the paper, we assume that 0 < S ≤ rank(XHX)
largest eigenvalues of T are distinct, i.e., λ1 > λ2 > . . . > λS .

II-A. Iterative Power Method
For the reconstruction of T , we will utilize the distributed algorithm

proposed in [8] for reconstructing the sample covariance matrix of the
sensor observations of a given network. The algorithm is based on the
power method which is an iterative method for determining the largest
eigenvalue and the corresponding (dominant) eigenvector of a given
matrix. In particular, the power method starts with an initial estimate

3353978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



of the dominant eigenvector of the matrix, and at each iteration the
estimate is updated. Mathematically, given an initial estimate of the
dominant eigenvector v1(0) ∈ CN of the matrix XT X, the algorithm
follows the iteration:

v1(k + 1) =
XT Xv1(k)

||XT Xv1(k)|| (2)

where k ≥ 0 is the iteration index. It can be shown that under
some regularity conditions, i.e., the largest eigenvalue is unique and
the initial estimate of the eigenvector has non-zero component in the
direction of the dominant eigenvector, it can be shown that v1(k),
k ≥ 0, is bounded and thus there exists a subsequence of v1(k)
which converges to a multiple of the dominant eigenvector of the
matrix XT X [10]. Moreover, since XT X is symmetric, its eigen-
values are real and therefore the whole sequence v1(k) converges
to a multiple of the dominant eigenvector of XT X. If we denote
this limit as v�

1 , i.e., limk→∞ v1(k) = v�
1 , then the corresponding

eigenvalue is simply λ1 = (v�
1)T XT Xv�

1/||v�
1 ||2. Once v�

1 and λ1

are calculated, the second largest eigenvalue λ2 and the correspond-
ing eigenvector v�

2 can be found by utilizing the power method on
XT X − λ1v�

1(v�
1)T /||v�

1 || provided that the regularity conditions are
satisfied. Similarly, λk and v�

k can be calculated by running the power

method on XT X − ∑k−1
l=1 λlv

�
l (v�

l )T /||v�
l ||.

II-B. Distributed Power Method via Consensus
At this point, it is clear that the power method performs the

eigenvalue matrix decomposition, and in the following we discuss
how such an algorithm can be completely decentralized, providing an
identical distance matrix to all node as the algorithm iterates, and using
only near neighbors communications. If we focus on the k-th iteration
of the power method in (2), the i-th element of the v1(k) is equal to:

[v1(k)]i = αk−1

M∑
l=1

[xi]l

⎛
⎝

N∑
j=1

[xj ]l[v1(k − 1)]j

⎞
⎠ , (3)

where αk−1 � ||XT Xv1(k−1)||−1. We note that [xi]l,1 ≤ l ≤ M , is
the i-th sensor observation and thus already known to sensor i. If the
norm of the estimate at time k and the inner summation in (3) can be
calculated in a decentralized fashion for all 1 ≤ l ≤ M , then [v1(k)]i
can be reconstructed at sensor i.

Average Consensus Algorithms: At this point of the algorithm, we
rely on the so called synchronous average consensus methods, namely,
linear iterative average consensus. Consider a set of (N ) nodes where
each node stores a real scalar value zi(0) ∈ R where i denotes the node
index. Average consensus is a distributed method allowing all nodes
to compute the average of the initial states (z̄(0) = 1/N

∑N
i=1 zi(0))

in an iterative fashion via only near neighbors’ communications. We
consider in our analysis the synchronous linear consensus algorithms
where every sensor, simultaneously, updates its own state value by a
weighted sum of differences between its neighbors’ values and its own
value:

zi(k + 1) = zi(k) +
∑

j∈Ni

Wij (zj(k) − zi(k)) (4)

where W is the weight matrix with non-negative entries and Ni is the
neighbor set of node i, i.e., node j ∈ Ni if dij ≤ R. In this case, the
network-wide update is given by

z(k + 1) = Wz(k) = W k+1z(0), (5)

where z(k) = [z1(k) . . . zN (k)]T . Under the conditions that

W ≥ 0,1T W = 1T , W1 = 1, ρ(W − 11T /N) < 1 (6)

where ρ(·) denotes the spectral radius of its argument and 1 is the all
ones vector, it has been shown that [11]:

lim
k→∞

z(k) = z̄(0)1. (7)

In other words, if the update weights W satisfy the above conditions, as
the number of iterations grows, each node’s state value converges to the

initial average. Interestingly, if the first three conditions are satisfied,
the fourth condition is equivalent to the network connectivity condition,
i.e., it is satisfied if and only if the network is strongly connected. Since
we are only interested in strongly connected network, the entries of the
W matrix can be chosen (offline) such that the rest of the conditions
are satisfied. Thus, such an algorithm is guaranteed to converge to the
initial global average via only local neighbor communication.

We are going to utilize the average consensus algorithm to calcu-
late (3) in a distributed way. Let us focus on the scenario where, at
k = 0, each sensor randomly determines the value of the corresponding
entry of v1(k), i.e., sensor j assigns a value to [v1(0)]j ∈ R. Then,
each sensor j can calculate [xj ]l[v1(0)]j locally for a given l since
it has access to both the local observation and the j-th entry of
v1(0). If we multiply this quantity by N and denote this as the
initial observation of node j as in the average consensus problem,
i.e., zj(0) = N [xj ]l[v1(0)]j , then by running the average consensus
algorithm

z̄(0) = 1/N
N∑

j=1

zj(0) =
N∑

j=1

[xj ]l[v1(0)]j , (8)

can be determined at each node. The decentralization of the power
method we propose is based on computing the inner summation
in (3) as the limit (8) of a consensus averaging session among the
sensors. In particular, M average consensus algorithms can be run
in parallel to calculate the above summation for all 1 ≤ l ≤ M ,
diffusing the information that each node locally needs to compute
(3). In fact, once these M summations are determined, each node i
can calculate [v1(1)]i by simply calculating the inner products of its
own observation and reconstructed summations. Moreover, the norm of

the current estimate,i.e., ||v(1)|| =
√∑N

j=1[v(1)]2j can be calculated

with one more average consensus since each node has access to
the corresponding entry of the estimate. We note that in this case
zj(0) = N [v(1)]2j . Thus, we have completed a single iteration of the
power method such that the j-th entry of the eigenvector is available
at the node j. This algorithm is to be repeated for each iteration of the
power algorithm.

For sufficiently large k, v1(k)/||v1(k)|| will closely estimate the
dominant eigenvector of XT X. If we denote the stopping time of the
algorithm as K ≥ 0, u1 = v1(K)/||v1(K)||, the largest eigenvalue of
XT X can be estimated as:

λ1 = u1XT Xu1. (9)

We note that the vector XT Xu1 is the same as (3) except the fact that
there is no α factor in front. Thus, as we have discussed above, it can
be calculated via average consensus such that [XT Xu1]j is available
at sensor j. Since we can rewrite (9) as

λ1 =
N∑

j=1

[u1]j [X
T Xu1]j , (10)

and both of the summands are available at sensor j, this summation
can also be calculated in a distributed way by initializing the consensus
algorithm by zj = N [u1]j [X

T Xu1]j . Therefore, λ1 is constructed in
a distributed way.

Once u1 and λ1 are calculated, one can run the power method on
XHX − λ1u1uT

1 to determine λ2 and u2 as we have discussed in
Section II-A. Parallel to our discussion above, we can also show that
these quantities can be estimated in a distributed way. If we denote
v2(k) as the estimate of the second dominant eigenvector of XT X at
the k-th step of the power method:

v2(k) = αk−1

(
XHX − λ1u1uT

1

)
v2(k − 1), (11)

where v2(k−1) is the previous estimate and αk−1 is the normalization
constant as mentioned before. As we have discussed above, the first
term of the equation, i.e., XHXv2(k − 1) can be calculated in a
distributed way such that i-th entry of the output vector is available

3354



at node i. If we denote the second term as c2, then [c2]i is equal to:

[c2]i = λ1[u1]i

N∑
j=1

[u1]j [v2(k − 1)]j . (12)

We note that [u1]j is already available at sensor j since it has been
already estimated and [v2(k − 1)]j is also available from the previous
step. Then, initializing the consensus method by zj = N [u1]j [v2(k −
1)]j , the summation in (12) can be calculated. Therefore, each node i
can determine the corresponding value of the vector c. At this point, we
completed one iteration of the power method for calculating the second
largest eigenvalue and the corresponding eigenvector of XT X. In a
similar manner, one can estimate the S largest (significant) eigenvalues
and the corresponding eigenvectors in a distributed way. We note that
S ≤ rank(XHX) = min(N, M). In practice, due to the nature of the
observed data, one can expect S << min(N, M).

Once S most significant eigenvalues and eigenvectors are con-
structed, we mainly need to distribute the entries of these eigenvectors
since i-th entries of these eigenvectors are only available at node i.
Of note is that we only need to distribute S parameters per sensor
which is expected to be much less than the dimension of the original
observation space, M . The distribution of the final S parameters can
be done by multicasting or flooding. Notice that, when a message
containing these S parameters is received, the nodes have to determine
where the message is originated from and to which eigenvector this
entry belongs to, to have an identical map. This can be achieved by
embedding such information into the packet headers.

Constructing S most significant eigenvectors, each node can estimate
the inner product matrix as

T̂ =
S∑

i=1

λiuiu
T
i . (13)

Once T is constructed, internode distances are calculated by (1).

II-C. Algorithm Complexity
In this section, we explore the complexity of the algorithm in

terms of the total number of radio transmissions for the reconstruction
of the distance matrix. For analysis purposes, we assume that the
nodes are distributed randomly on a 2-dimensional unit torus and the
neighborhood radius is chosen as Θ(

√
log N/N) where Θ(.) is the

asymptotic tight bound if its argument. We note that such modeling
has been shown to closely reflect the behavior of the wireless sensor
networks [9] and this particular choice of the radius guarantees that
the network is strongly connected with high probability [12]. It has
been shown that for random geometric graphs, consensus algorithms
requires O(N2.5/

√
log N) radio transmissions to achieve the true

average to accuracy of 1/Na where O(.) is the asymptotic upper
bound of its argument [13]. On the other hand, for each iteration
of the power method in (3), one needs M + 1 parallel consensus
algorithms. Moreover, one needs to run the power method for each
eigenvector, i.e., total of S times. Thus, the complexity of the first
part is O

(
N2.5/

√
log N(M + 1)SK

)
where K is the stopping time

for the power method. In the second part, S reconstructed eigenvectors
has to be multicasted over the network. Since the R = Θ(

√
log N/N),

the number of hubs to get from one corner to the diagonally opposite
corner is Θ(

√
N/ log N). Therefore, the number of radio transmissions

required for the second part is O
(
SN

√
N/ log N

)
. Combining the

first and the second part, the overall complexity of the algorithm is:

O
(
S(M + 1)K N2.5/

√
log N + S N1.5/

√
log N

)
(14)

We note that both with respect to the network size N and the initial
observation dimension M , the dominant term in the complexity of
the algorithm is due to calculating eigenvalues and eigenvectors in
a distributed way. Since the number of significant eigenvectors are
expected to be much less than the dimension of the observation space,
distributing this information is computationally light. While it is true
that the proposed algorithm may have a higher complexity than simply

Fig. 1. Original observation in 3-dimensional Euclidean space.

multicasting initial observations, we only need to distribute S << M
parameters per sensor and the first part of the algorithm (power method)
is robust to both dynamic topologies and link failures.

III. SIMULATION

In this section, we utilize the proposed algorithm to estimate the
distances among the observations of a random network and then to
reduce the dimensionality of these observations. Our network consists
of N = 1000 nodes which are randomly distributed on an 1×1 square,
and the connectivity radius is chosen as

√
log(N)/N . The observations

of the sensors are in 3 dimensional Euclidean space and also on a Swiss
roll. Of note is that a Swiss roll can be fully described in 2 dimensions.
The sensor observations are given as in Fig. 1. We also note that the
sensors and the observations are randomly matched, therefore two close
by points on the manifold do not necessarily belong to two physically
neighboring nodes.

In the decentralized distance estimation procedure, there is a tradeoff
between the accuracy of the estimate and the complexity of the
algorithm. The stopping time for the power method K and the number
of consensus iterations L should be chosen such that the algorithm can
be executed in a practical amount of time and the distance estimate
is accurate enough for the ISOMAP algorithm to be able to identify
the underlying manifold. Fig. 2(a) shows the behavior of the mean
squared distance between true distance matrix D and the estimated
distance matrix D̂ with respect to the number of consensus iterations
for a fixed value of L and S in a log scale. Mathematically speaking,
the MSE is defined as:

1

N2

N∑
i=1

N∑
j=1

(
Dij − D̂ij

)2
. (15)

The distance estimate converges at approximately 400 consensus itera-
tions, as illustrated in Fig. 2(a). Moreover in this particular simulation
only 5 iterations of the power method were required to achieve an MSE
of 10−3 between the true distances and the estimated distances.

Fig. 2(b) shows the residual error between the estimated data points
and the original data with respect to the number of number of significant
eigenvectors that are reconstructed. If the data were analyzed by a
central entity, one would expect that the residual error would saturate at
S = 2 since this is the true dimension of the underlying manifold, i.e.,
Swiss roll [4]. While with our proposed method one can still determine
S = 2 correctly when the number of iterations is relatively large, as
this number decreases, the extra error carried out in the system results
in the wrong estimation of S as in Fig. 2(b).

In Fig. 3, we have reconstructed the sensor observations on a 2
dimensional space by using centralized ISOMAP and the proposed
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Fig. 2.

method. The parameters were chosen as S = 2, K = 50 and the
number of consensus iterations to be equal to 500. The centralized
ISOMAP is assumed to be true reconstruction. Once can clearly see
that decentralized algorithm has little performance loss in terms of its
ability to accurately identify the low-dimensional manifold.

IV. CONCLUSION

In this paper, we have proposed a decentralized method for recon-
structing distances among the sensor observations on a given network.
Unlike the existing literature, our method neither requires an existence
of a central entity nor relies on the assumption that geographically
close sensors’ observations are also close on the underlying manifold.
Our iterative power method and average consensus based decentralized
algorithm reconstructs the distance matrix at each sensor so that each
node in the network can reconstruct and perform dimensionality re-
duction individually. Furthermore, we have simulated the performance
characteristics of our method and showed that even under highly

Fig. 3. ISOMAP output with true distance matrix and estimated distance
matrix.

practical settings, its performance is comparable to the centralized
setting.
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