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ABSTRACT

In this paper we present a novel approach for sampling and

reconstructing any K-sided convex and bilevel polygon with

the use of exponential splines [1]. It will be shown that with

K+1 projections we are able to perfectly reconstruct a K-sided

bilevel polygon from its samples. We will also investigate the

multichannel sampling scenario, consisting of a bank of E-

spline filters, each with a different delay parameter compared

to the reference signal. We show how by retrieving the delay

parameters, we can symmetrically sample and reconstruct a

given bilevel polygon using exponential splines.

Index Terms— Bilevel Polygon, Multichannel Sampling,

Exponential Splines, FRI Signals, Projection-Slice Theorem

1. INTRODUCTION

Sampling theory plays a fundamental role in modern signal

processing and communications. We all know that signals

with bandlimited bandwidth can be sampled and recon-

structed perfectly with Shannon’s famous sampling theorem.

Recently, it was shown [2, 3] that it is possible to sample and

perfectly reconstruct some classes of non-bandlimited sig-

nals. Signals that can be reconstructed using this framework

are called signals with Finite Rate of Innovation (FRI) as they

can be completely defined by a finite number of parameters.

The results of [2, 3] apply only to 1-D signals while exten-

sions to the multidimensional case were considered in [4, 5].

Maravic et al [5] considered some 2-D FRI signals, such as

2-D stream of Diracs and bilevel polygons using the Sinc

and Gaussian sampling kernel. Shukla et al [4] proposed an

algorithm, from the theory of complex moments, for sam-

pling bilevel polygons with the use of B-splines as the sam-

pling kernel. In [3], it was shown that exponential splines

(E-splines), another important family of kernels, can be used

as the sampling kernel to sample 1-D FRI signals. However,

thus far, E-splines have not been considered to sample multi-

dimensional signals.

The contribution of this paper is two-fold; First, we

present an algorithm for sampling and perfectly reconstruct-

ing bilevel polygons using E-spline sampling kernels. Then

we consider the case where a bank of E-spline filters is used

to acquire a 2-D signal, where each filter has access to a

delayed version of the input signal. It will be shown that, by

registering the delay parameters from the relevant features of

the image samples, it is possible to synchronize the different

channels exactly so that perfect reconstruction of the original

polygonal image and its delayed versions is achieved at the

receiver. It is important to mention that generally, using a

multichannel system to acquire a scene makes the system

more robust to noise and sensor failure.

The paper is organised as follows: In Section II we will

briefly discuss the sampling setup needed for sampling 2-

D FRI signals. In Section III we will introduce our novel

approach for sampling bilevel polygons using E-splines. In

Section IV we will describe our method for sampling bilevel

polygons in a multichannel system.

2. PRELIMINARIES AND PROBLEM SETUP

A general 2-D sampling setup for FRI signals is shown in

Figure 1. Here, g(x, y) represents the input signal, ϕ(x, y)
the sampling kernel, sj,k the samples and Tx, Ty are the

sampling intervals. From the setup shown in Figure 1, the

Fig. 1. 2-D sampling setup

samples sj,k are given by:

sj,k =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) φ(

x

Tx
− j,

y

Ty
− k) dx dy (1)

where the kernel ϕ(x, y) is the time reversed version of the

filter response. ϕ(x, y) can easily be produced by the tensor

product between ϕ(x) and ϕ(y), that is ϕ(x, y) = ϕ(x) ⊗
ϕ(y). As mentioned before, ϕ(x, y) is chosen to be an expo-

nential reproducing kernel. The notion of exponential repro-
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ducing kernels is quite recent and were developed by Unser

et al [1]. A function β̂�α(ω) with Fourier transform

β̂�α(ω) =
N∏

n=0

1− eαn−jω

jω − αn

is called E-spline of order N where �α = (α0, α1, . . . , αN )
can be real or complex. The produced spline has a com-

pact support and can reproduce any exponential in the sub-

space spanned by (eα0t, eα1t, . . . , eαN t) which is obtained by

successive convolutions of lower order E-splines ((N+1)-fold

convolution). Exponential spline kernels can therefore repro-

duce, with their shifted versions, real or complex exponen-

tials. That is, in 2-D form, any kernel satisfying:

∑
j∈Z

∑
k∈Z

cm,n
j,k ϕ(x− j, y − k) = eαmxeβny (2)

is an E-spline for a proper choice of the coefficients cm,n
j,k

which can be found numerically [3]. Here, m = 0, 1, . . . , M ,

n = 0, 1, . . . , N , αm = α0 + mλ1 and βn = β0 + nλ2.

Before going any further, let us introduce an interesting

property here: If we call τm,n to be:

τm,n =
∑

j

∑
k

cm,n
j,k sj,k (3)

then by expanding sj,k and replacing the above property (as-

suming Tx = Ty = 1 for simplicity), we will obtain the ex-

ponential moments of the signal, i.e. :

τm,n = < g(x, y),
∑

j

∑
k

cm,n
j,k φ(x− j, y − k) > (4)

= < g(x, y), eαmxeβny > (5)

=
∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαmxeβny dx dy (6)

In the case of purely imaginary exponentials, we will have the

discrete Fourier coefficients of the signal g(x, y), that is:

τm,n = G[αm, βn] (7)

where G(u, v) represents the Fourier transform of the signal

g(x, y). This property is very handy when we are reconstruct-

ing FRI sampled signals using E-splines. In the next section

we will present our work on how to sample bilevel polygons

using E-splines.

3. A SAMPLING THEOREM FOR BILEVEL
POLYGONS USING EXPONENTIAL SPLINES

Consider a non-intersecting, convex and bilevel K-sided poly-

gon with vertices at points (xn, yn) where n = 1, 2, . . . , K.

The described polygon can be uniquely specified by its K ver-

tices and since each vertex can be described by its xn and

yn locations, then the polygon has a finite rate of innovation

equal to 2K.

Reconstruction of sampled bilevel polygons with polyno-

mial reproducing kernels have been looked at in [4, 5], how-

ever sampling methods for bilevel polygons with exponential

splines have not been considered yet. In this section we will

present our approach for reconstructing convex, bilevel poly-

gons with the use of E-splines. At first we will see how the

Fourier transform of bilevel polygons is represented.

S.Lee and R.Mittra [6] derived a general formula for the

Fourier transform of any K-sided bilevel polygon where they

showed that the Fourier transform is directly related to the

location of the polygon’s vertices (xn, yn) and expressed as:

G(u, v) =
K∑

n=1

ej(uxn+vyn) pn−1 − pn

(u + pn−1v).(u + pnv)
(8)

Here pn represent the gradients of the polygonal lines. The

derived equation closely follows the 2-D harmonic retrieval

data model [7], but since the equation has a time-varying am-

plitude, 2-D harmonic retrieval methods cannot simply be ap-

plied to retrieve the locations of the vertices of the polygon.

With the use of Radon transform and the projection-slice the-

orem [8] we obtain an algorithm for retrieving the locations

of the vertices of bilevel polygons from their samples. From

projection-slice theorem we know that there is a direct re-

lationship between the 2-D Fourier transform and the 1-D

Fourier transform of a Radon projection i.e. :

G(ω cos(θ), ω sin(θ)) = R̂g(ω, θ) (9)

where G(u, v) is the Fourier transform of g(x, y) and R̂(w, θ)
is the 1-D Fourier transform of the Radon transform of

g(x, y). With the help of this mapping, we can transform

the Fourier coefficients of bilevel polygons, obtained from

E-spline sampling kernel (see equation (3)), to the Radon

domain, as follows:

R̂g(ω, θ)× ω2 =
N∑

n=1

an × ejω(cos(θ)xn+sin(θ)yn) (10)

where an is :
pn−1−pn

(cos(θ)+pn−1sin(θ)).(cos(θ)+pnsin(θ)) . Let us in-

troduce S(ω, θ) = R̂g(ω, θ)× ω2 to present the new mapped

equation. Thus, the above equation can be rewritten as:

S(ω, θ) =
N∑

n=1

an × ejω(cos(θ)xn+sin(θ)yn) (11)

At ω = 0, S(ω, θ) = 0 so the minimum required spline or-

der can be decreased by 1 as the first data sample is always

zero. The mapped equation, at different projections, follows

the data model used for the 1-D harmonic retrieval data model

exactly, that is:

G(ω, θ) =
N∑

n=1

an.ejωzn =
N∑

n=1

an.(un)ω (12)
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where an is defined as before, zn = cos(θ)xn + sin(θ)yn

and un = ejzn . Thus, by using a 1-D harmonic retrieval

method, for example the Prony’s method, we can find all the

an’s and the zn’s. By backprojecting zn’s according to their

θ we are able to retrieve some information about the poly-

gon’s vertices. The question here is that how many projec-

tions will definitely guarantee us to perfectly reconstruct the

polygon? Let us assume that the function g(x, y) contains K

Diracs, then, as Maravic points out in her paper [9], K+1 pro-

jections will entirely specify the signal, i.e. points that have

K+1 line intersections from the back-projections correspond

to the K Diracs. Any K-sided convex and bilevel polygon is

completely specified by the location of its K vertices. If we

think of the K vertices as Diracs then K+1 projections will

guarantee us to perfectly retrieve the vertices of the bilevel

polygon. By projections we mean line integrals at arbitrary

angles tan−1( n
m ), where m and n are the indices of the sam-

ples.

To reconstruct a set of K Diracs from its samples, we need

at least 2K data points, thus a minimum 2-D spline order of

2K-1 is required. For bilevel polygons, as the first data sample

is always zero, we need a minimum 2-D spline order of 2K-

2 at each projection angle. Assuming that the input signal is

sampled at a rate Tx = Ty = T with an E-spline order of

2K-2, then 3 immediate projections will be available at the

angles 0, 90 and 45 degrees. Since K ≥ 3, more projections

will be needed, thus, a higher spline order is necessary for

the retrieval of all the parameters zn. The next immediate

angles are at tan−1(2) and tan−1( 1
2 ), therefore for K = 3 and

4 for example, a minimum spline order of 2(2K-2) = 8 and

12 is required respectively. Thus, the minimum spline order

required for a perfect reconstruction of a given K-sided bilevel

polygon is N = p.(2K − 2) where p = max(m, n) needed

in order to produce at least K+1 projections. From the K+1

projections, by using Prony’s method, all the set of parameters

are retrieved, then normalized by dividing to
√

(m2 + n2).
Finally all the retrieved parameters are back-projected. Points

that have K+1 line intersections correspond to the K vertices

of the polygon. Figure 2 shows an example of the sampling

process where the input signal, corresponding samples and

the reconstructed signal are shown.

4. MULTICHANNEL SAMPLING OF BILEVEL
POLYGONS

In this section we investigate the scenario of multichannel

sampling of bilevel polygons. A model of a multichannel

system is shown in Figure 3 where the bank of E-spline fil-

ters ϕ1, ϕ2, . . . , ϕN−1 receive different delayed versions of

the original image g0(x, y). Here, the delays are denoted by

T1, T2, . . . , TN−1.

Baboulaz [10] has looked at the case of multichannel sam-

pling of a stream 1-D Diracs using exponential splines, with

simple translation being the delay or the transformation pa-

(a) (b) (c)

Fig. 2. (a) The original 3-sided polygon in a frame size of

256x256 (b) The 32x32 samples of the input signal (c) The re-

constructed vertices with 3+1=4 back-projections, the crosses

are the actual vertices of the polygon. [Not to scale]

Fig. 3. A multichannel sampling scenario of FRI signals

rameter, which he proves that, unlike the polynomial repro-

ducing kernels, we can truly distribute the acquisition of FRI

signals with kernels reproducing exponentials. The reason is

that, exponential splines can offer different kernels with the

same order due to the arbitrary choice of the parameter λ
in αm = α0 + mλ. The method discussed in [10] can be

extended to the bilevel polygons’ case where we only have

translations x0 and y0 as the transformation parameters. The

method is as follows:

Consider we have g0(x, y) as the reference image and

g1(x, y) as its delayed version where g1(x, y) = g0(x −
x0, y − y0), which is just a translated version of the refer-

ence image. Bearing in mind the formula given in (6) for

the exponential moments, with minimum spline order [M, N ]
required, and leaving βn intact, assume that one parameter

is common between the sets α0 and α1, for example the first

and the last parameter of these two sets, i.e. α0
P = α1

0 = α.

The exponential moments of the two sampled images at the

corresponding parameters are:

τ0
P,n =

∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαxeβny dx dy (13)

τ1
0,n =

∫ ∞

−∞

∫ ∞

−∞
g(x− x0, y − y0) eαxeβny dx dy (14)

which with simple rearranging leads to:
τ1
0,n

τ0
P,n

= eαx0 eβny0 .

By taking logarithms on both sides we will obtain a system

of simple linear equations which we can solve for x0 and y0

using matrix equations. Therefore if one of the set of the para-

meters are common between the two acquisition devices then,

not only we can exactly retrieve the shifts x0 and y0 but we
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(a) (b) (c)

Fig. 4. (a) The reference image in a frame size of 256x256

(b) The 16x16 samples of the reference image (top-left) and

the 16x16 samples of all other translated images with shifts

[x0, y0] : [50, 10]; [70, 70]; [20, 70] (c) The reconstructed ver-

tices with 3+1=4 back-projections, the crosses are the actual

vertices of the polygon. [Not to scale]

also can easily produce the rest of the samples of both im-

ages all together. This means that, by estimating the shifts,

we can produce the higher order moments of the reference

image from the lower order moments of its translated version

and vice versa. It is important to mention that, in the case of

having more than two sensors, we can just set one of the pa-

rameters of βn common between the two sets. Finally we can

run our algorithm described in section III to perfectly recon-

struct the bilevel polygon.

Multichannel sampling aims to have sensors of lower

order. Since we need less samples from each sensor, the

support of the corresponding sampling kernels are also re-

duced. As an example, assume that we have multichan-

nel system with 4 filter banks, where the reference image

is a bilevel triangle in a frame size of 256x256, and the

delayed images are a 2-D translated version of the refer-

ence image. If we want reconstruct each image indepen-

dently, as was shown in Section III a 2-D spline order of

[M, N ] = [8, 8] is required for each image, that is all the

τ i
0:8,0:8 are required, but since we can sample the images

symmetrically, the spline orders needed for each image can

be reduced. Figure 4 illustrates an example of this sce-

nario. α3 and β3 are chosen to be common between the set

of parameters, thus we only have the following exponential

moments from all the 4 filters: τ0
0:3,0:3, τ1

3:8,0:3, τ2
0:3,3:8 and

τ3
3:8,3:8. In the Figure, the reference image, its 16x16 under-

sampled version with an spline order of [M, N ] = [3, 3], the

16x16 samples of all the other under-sampled images with

shifts [x0, y0] : [50, 10]; [70, 70]; [20, 70] and spline orders

[M, N ] = [5, 3]; [3, 5]; [5, 5] and the reconstructed reference

image are all shown. Other images from other sensors could

also be reconstructed but only the the reconstructed reference

image is shown in the Figure.

5. CONCLUSION

In this paper we showed that with the use of projection-slice

theorem and K+1 projections, a K-sided bilevel polygon can

be perfectly reconstructed from its samples. We also showed

that, by retrieving the delay parameters from the relevant fea-

tures of image samples, we can symmetrically sample and

reconstruct the reference image in a multichannel filter bank

system. Investigating more complicated delay parameters,

such as scaling, rotation and translation all-together and also

examining the proposed sampling schemes under noisy con-

ditions is an immediate future work for our research in this

area.
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