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ABSTRACT
In this paper we present a new technique for minimizing
a class of nonconvex functions for solving the problem of
under–determined systems of linear equations. The proposed
technique is based on locally replacing the nonconvex ob-
jective function by a convex objective function. The main
property of the utilized convex function is that it is mini-
mized at a point that reduces the original concave function.
The resulting algorithm is iterative and outperforms some
previous algorithms that have been applied to the same
problem .
Indexing Terms: compressed sensing, sparse component
analysis, optimization. .

I. INTRODUCTION
The problem of �nding a unique solution of linear under–

determined systems of equations As = x, where A ∈
R

m×n and m < n, is challenging indeed. Since the number
of equations is less than the number of unknowns, it is known
that such systems have in�nitely many solutions and thus, it
is to identify which of these candidate solutions is the desired
one, it is necessary to impose constraints on the candidate
solution.
A powerful constraint that can be utilized is the “sparsity”

of the solution vector. Sparsity means that the solution vector
has few nonzero elements. This constraint is realistic in many
situations, e.g., signal representation using a small number
of atoms from an overcomplete dictionary [1], extraction of
the event related potential (ERP) signal from a background
electroencephalographic (EEG) noise [2], and direction of
arrival (DOA) estimation[3].
There are many algorithms developed for solving the

above mentioned problem. Most of these algorithms are
based on solving the following general optimization problem

ŝ = argmin
s

g(s) subject to x = As (1)

where g(·) is an objective function that measures the diver-
sity (antisparsity) of the solution vector.
Maximizing the sparsity of the solution vector can be

achieved by selecting g(s) = ||s||0, where the function ||s||0
simply counts the number of nonzeros in s. Unfortunately,
until now, an effective algorithm for solving this optimization
problem did not exist [4]. On the other hand, it is known
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that selecting g(s) = ||s||2 produces a nonsparse solution
[5].
Over the last two decades, g(s) = ||s||1 was extensively

utilized for measuring the diversity of the solution vector.
The resulting optimization problem is convex and can be
solved ef�ciently [6]. More interestingly, under certain con-
ditions on the dictionary matrix A , the solution obtained
by minimizing ||s||1 is exactly the same as that obtained
by minimizing ||s||0 [7]. Unfortunately, these conditions are
somewhat restrictive.
In [8] it was shown that, minimizing ||s||pp for 0 < p < 1,

can perform much better than minimizing ||s||1 in the sense
that a minimum number of observations are needed for exact
reconstruction of the sparse solution vector.
In this paper, we propose a new algorithm for solving the

problem of under–determined systems of equations when the
solution vector is known to be sparse. This algorithm is based
on iteratively minimizing a concave objective function that
measures the diversity (antisparsity) of the solution vector.
Since minimizing a convex function is more ef�cient than
minimizing a concave function, the proposed algorithm is
based on locally replacing the concave objective function
by a convex function. The key point is to iteratively select
the convex function properly such that it will be minimized
at a point that reduces the original concave function. The
algorithm will thus converge to at least a local minimum.
Since the proposed algorithm is based on Minimizing a

Concave function via a Convex function Approximation, we
will refer to the derived algorithm as MCCA.
The paper is organized as follows. In Section II the

proposed local convex function is presented. The MCCA
algorithm is derived in Section III . Section IV presents
some computer simulations for assessing the performance
of the proposed algorithms. Finally, conclusions are given
in Section V.

II. PROPOSED CONVEX FUNCTION
The class of non–convex (concave) objective functions,

gc(t), considered in this paper have the following property.

Property 1: The function gc(|t|) is concave and monoton-
ically increasing (decreasing) function for all values of t ≥ 0
(t < 0), respectively.
Examples of such functions which can be used for sparse
vector reconstruction are gp(t) = |t|p and glog(t) = log(|t|).
The main dif�culties associated with minimizing a con-

cave function are: 1) minimizing a concave function is not as
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ef�cient as minimizing a convex function, and 2) minimizing
a non-convex function is associated with multiple local
minima in addition to the global minima, while a convex
function has only one global minimum.
In this paper, we propose an ef�cient technique that can

be utilized in minimizing non-convex objective functions
that obey Property 1. The main idea behind the proposed
technique is at each iteration, we locally replace the concave
function by a convex function that is minimized at a point
where the concave function is reduced in value.
The minimization problem at hand can be stated as

follows: starting from an initial point t0, �nd t1 such that
gc(t1) ≤ gc(t0). The solution of this problem is provided in
the following theorem.

Theorem 1: Consider a monotonically increasing con-
cave function gc(t) de�ned for all values of t ≥ 0, and a
starting point t0. A new point t1, such that gc(t1) ≤ gc(t0),
can be estimated as a minimizer of the following function

t1 = arg min
t

f(t) = gc(t0)+g′c(t0)(t−t0)−0.5g′′c (t0)(t−t0)2

(2)
where g′c(t0) and g′′c (t0) are the gradient and Hessian of
gc(t) at t = t0, respectively.

Proof : Since gc(t) is concave, g′′c (t) is negative for all
values of t ≥ 0. Consequently, f ′′(t), the Hessian of f(t),
is positive for all values of t ≥ 0, i.e. f(t) is a convex
function. The convexity of f(t) implies that it is always
above any tangent, while the concavity of gc(t) implies that
it is always below any tangent. Since f(t) and gc(t) have a
common tangent at t = t0, which is given by the �rst two
terms in (2), f(t) and gc(t) do not intersect at any other
point. Moreover, since gc(t) is a monotonically increasing
function, its tangent at any point, including t0, always has
a positive slope. For the convex function f(t), a tangent
with positive slope means that the minimum of this function
occurs at a point t1 < t0. And since gc(t) is monotonically
increasing, this means that gc(t1) < gc(t0). �
Consider the following corollary.
Corollary 1: A monotonically decreasing concave func-

tion gc(t), de�ned for all values of t ≤ 0, can be minimized
if it is locally replaced by a convex function f(t), de�ned in
Theorem 1.
Proof : The proof follows readily from the proof of Theorem
1.
For the n dimensional case, f(s) can be expressed as

f(s) = g(s0) + (s − s0)T∇g(s0)
− 0.5(s− s0)T∇2g(s0)(s − s0) (3)

where s ∈ R
n, g(s) =

∑
i gc(s[i]) for some gc(s[i]) which

obeys Property 1, and ∇g(s0) and ∇2g(s0) are the gradient
and Hessian of g(s) at s = s0, respectively.

Corollary 2: A local minimum of the function gp(s) �∑
i |s[i]|p under the constraint As = x, where 0 < p < 1,

can be obtained by iteratively minimizing the convex function
f(s) given by (3), with g(s) replaced by gp(s)
The proof makes use of the fact that gp(t) is non-convex

and monotonically increasing for 0 < p < 1. The proof is
straightforward but is omitted due to lack of space. �
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Fig. 1. Demonstration of the proposed iterative technique. The
solid curve is gc(t) whereas the dashed lines represent f(t) at the
�rst two iterations.

The iteration steps are shown in Figure 1. The iterative
procedure is repeated until gp(t) converges to a minima at
which gp(tk) = gp(tk−1), where k is the iteration index.
Although any other convex function may be utilized

instead of the proposed function, the proposed technique is a
simple and straightforward way of accomplishing our goals.
In the next section, an iterative algorithm that minimizes (1)
after replacing g(s) by its local convex approximation f(s)
is derived.

III. THE MCCA ALGORITHM

As described in the previous section, MCCA algorithm is
based on replacing g(s) in (1) by the convex function f(s),
de�ned in (3). Assuming that a starting point s0 is given,
then s1, the point at which g(s1) ≤ g(s0), can be obtained
by minimizing the following objective function

s1 = arg min
s

g(s0) + (s − s0)T∇g(s0)

−0.5(s − s0)T∇2g(s0)(s − s0)
subject to x = As. (4)

This optimization problem can be solved by following the
standard method of Lagrangian multipliers (see, e.g. [6]).
We de�ne the Lagrangian L(s, λ) as

L(s, λ) = g(s0) + (s − s0)T∇g(s0) (5)

− 0.5(s − s0)T∇2g(s0)(s − s0) + λT (As − x)

where λ is the (m × 1) vector of Lagrange multipliers.
A necessary condition for the Lagrangian L(s, λ) to be
minimized at s1 is that (s1, λ∗) be stationary points of the
Lagrangian function, i.e.

∇sL(s1, λ∗) = ∇g(s0) −∇2g(s0)(s1 − s0)
+AT λ∗ = 0, (6)

∇λL(s1, λ∗) = As1 − x = 0. (7)

For convenience we use d and H to refer to the gradi-
ent ∇g(s0) and the inverse of the Hessian (∇2g(s0))−1,
respectively. In doing so, we assume that the Hessian matrix
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is invertible. As will be seen later, this assumption is always
true for the cases considered in this paper. From (6) we have

s1 = s0 + H(d + AT λ∗). (8)

Substituting this equation into (7), and solving for λ∗ we
get

λ∗ = (AHAT )−1(x − As0 − AHd)
= −(AHAT )−1AHd (9)

where the second equality holds because s0 is feasible,
i.e. As0 = x. Substituting (9) back into (8), we get the
following general expression for s1:

s1 = s0 + Hd − HAT (AHAT )−1AHd.

More generally, the estimated value of the solution at the
kth iteration can be expressed as

sk = sk−1 + Hkdk − HkAT (AHkAT )−1AHkdk (10)

where both Hk and dk are calculated at sk−1.

III-A. gp(s) minimization
When gp(s) =

∑
i |s[i]|p, where 0 < p < 1, is utilized as

an objective function in (1), the ith element of the gradient
dk is given by

dk[i] =
(

δgp(s)
δs[i]

)
s=sk−1

= psk−1[i]|sk−1[i]|p−2 (11)

where sk−1[i] is the ith element of sk−1. The Hessian is a
diagonal matrix, and the ith element of the main diagonal
of Hk is given by

Hk[i, i] =

(
δ2gp(s)
δs[i]2

)−1

s=sk−1

=
1

p(p − 1)
|sk−1[i]|2−p.

(12)
Note that Hk is de�ned for all values of sk−1[i] even when
sk−1[i] = 0. From (11) and (12) we �nd that Hkdk =

1
p−1sk−1. Substituting this expression into (10), we get

sk =
p

p − 1
sk−1 − 1

p − 1
HkAT (AHkAT )−1Ask−1

= p1sk−1 + (1 − p1)HkAT (AHkAT )−1x (13)

where in the second equality p1 = p
p−1 , and we utilized the

fact that sk−1 is feasible, i.e. Ask−1 = x. The value sk

given by (13) is always feasible as shown by

Ask = p1Ask−1 + (1 − p1)AHkAT (AHkAT )−1x

= p1x + (1 − p1)x = x.

By de�ning W k = diag(|sk−1[i]|1−0.5p), (13) can be
written as

sk = p1sk−1 + (1 − p1)W k(AW k)†x. (14)

where † is the Moore-Penrose inverse.
Note that the resulting solution at the kth iteration is

an af�ne combination of the previous solution and the
generalized FOCUSS solution derived in [5] for the same

Table I. MCCA Algorithm

Algorithm 1: MCCA Algorithm

Given an (m × n) matrix A of basis vectors, and a vector
x ∈ R

m. Select a value for p such that 0 < p < 1,
a small threshold β, and an initial feasible point s0. This
point can be selected as the least squares solution, i.e. s0 =
AT (AAT )−1x. Then set k = 0 and repeat the following
steps:

Start
1) Set k = k + 1,
2) Calculate Hk using (12).
3) Calculate s̃k = HkAT (AHkAT )−1x.
4) Calculate

p1 = argmin
q

gp(qsk + (1− q)s̃k)

subject to − 1 ≤ q ≤ 0

5) Set sk = p1sk + (1 − p1)s̃k .
6) if ||sk − sk−1||2 < β, break

else
go to step (1).

end
End

objective function. Thus, MCCA is a regularized version of
FOCUSS, where p1 is the regularization parameter. Accord-
ingly, instead of explicitly setting p1 = p

p−1 , we can choose
to select the value of the regularization parameter such that
gc(t) is minimized at every iteration. From the de�nitions of
p1 and W , it may be shown that −1 ≤ p1 ≤ 0 for property 1
to be satis�ed. The details of the proposed MCCA algorithm,
along with the procedure to select p1, are shown in Table 1.

III-B. Performance Enhancement
The performance of (13) can be affected by the non–

convexity of the objective function gp(s). As a result, MCCA
may converge to a local minima. This problem can be
alleviated by the following perturbation procedure. 1) select
a feasible solution vector, 2) Run MCCA and get a new
solution vector, 3) Perturb the solution vector by a random
noise vector of suitable variance, that is constrained to be
in the null space of A to ensure the feasibility of the new
perturbed vector, 4) go to step 2 to obtain a new solution
vector: 5) if the cardinality of the new solution vector is
less than or equal to that of the previous solution vector,
accept this new solution; otherwise, retain the old solution
and go to step 3: 6) repeat steps 3–5 until a stopping
criterion is satis�ed. The stopping criterion could be a
maximum number of iterations, or a pre–speci�ed value of
the cardinality of the solution.
As will be seen in the simulation results, following this

procedure greatly improves the performance of the MCCA
algorithm. When this perturbation procedure is followed, the
resulting algorithm is called Iterative MCCA (IMCCA).

IV. SIMULATION RESULTS

To examine the effect of changing the value of p on
the performance of MCCA and IMCCA algorithms, three
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Fig. 2. Comparison between different algorithms in terms of the
probability of exact reconstruction as a function of the number of
observations.

different values of p are considered, e.g. p = 0.1, 0.5
and 0.9. The performance of the proposed algorithms is
compared with those of the following three algorithms; 1)
linear programming algorithm for minimizing �1-norm [6],
2) FOCUSS algorithm [3], and 3) generalized FOCUSS (GF)
for minimizing gp(s) [5]. The cvx software1 is utilized for
solving (1) when g(s) is the �1-norm.
The comparison between these three algorithms and the

proposed algorithm is made in terms of the number of obser-
vations needed for exact reconstruction of the sparse vector.
This example can be interpreted as �nding the minimum
number of sensors (m) needed for recovering n signals,
where it is known that n > m and the number of active
sources at any time is k < m. In this example, n = 40,
k = 3, and m increases from 4 to 25. For each value of
m, a random (m × n) matrix A is created whose entries
are each Gaussian random variables with zero mean and
unit variance. A sparse solution ss with k nonzero entries is
then generated; the indices of these k entries are randomly
selected, and their absolute amplitudes are chosen from a
uniform distribution between 0.1 and 3, where their signs
are randomly assigned. The same A and ss are used for
each algorithm. For each value of m, the probability of exact
reconstruction, de�ned as the ratio between the number of
runs at which each algorithm estimated ss successfully to
the total number of runs, is calculated. The total number of
runs in this example is 1000.
The results are shown in Figure 2, where in this �gure,

”GF” refers to the generalized FOCUSS algorithm [5]. As
shown in this �gure, although the performance of MCCA
is almost similar to that of �1-norm, IMCCA algorithm,
for all considered values of p, outperform the other algo-
rithms. Moreover, the smaller the considered value of p,
the better the performance of IMCCA. Moreover, the result
that IMCCA signi�cantly outperforms MCCA indicates that
convergence to local minima is a signi�cant problem and
that the perturbation technique offered by IMCCA is at least
partially effective in dealing with this issue.

1This is a free software available at http://www.stanford.edu/˜boyd/cvx/

It is shown in Figure 2 that the minimum value of m
for which the IMCCA algorithm with p = 0.1 (best case)
is capable of correctly estimating the sparse vector ss is 8
sensors, while both FOCUSS and the GF algorithms each
require 22 sensors. The �1 algorithm requires 18 sensors.

V. CONCLUSION
In this paper we presented a new technique for minimizing

a class of nonconvex functions for solving the problem of
under–determined system of linear equations. The proposed
technique was based on locally replacing the nonconvex
objective function by a convex objective function. The result-
ing algorithm is iterative and outperforms some previously-
developed algorithms that are utilized for solving the same
problem.
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