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ABSTRACT 
 
This paper provides a novel method to obtain the 
eigenvectors of discrete Fourier transform (DFT), which 
are accurate approximations to the continuous Hermite-
Gaussian functions (HGFs). The proposed method uses 
a generating matrix and an initial eigenvector. By 
multiplying the initial eigenvector with the generating 
matrix, we can derive a new eigenvector. Repeating this 
procedure we can acquire all the eigenvectors. Compare 
with the conventional O(N3) commutative matrix 
method, this new method can generate all the DFT 
eigenvectors with complexity reduced to O(N2logN).  
The generating matrix can be further used to intensify 
the conventional commuting matrix. The simulation 
result shows that the Hermite-Gaussian like (HGL) 
eigenvectors of the strengthened commuting matrix 
outperform those of Santhanam’s.  
   

Index Terms  Discrete Fourier transform, Hermite-
Gauss functions, eigenvector 

 
1.  INTRODUCTION 

 
The Fractional Fourier transform (FRFT) [1,2,3,8,9] 

has many possible applications in signal processing area, 
such as optimal filtering [1], data encryption [2], 
moving target indication via Radar system [3], etc. To 
develop a discrete version of the FRFT (DFRFT), recent 
efforts have focused on generating an orthogonal basis 
of eigenvectors for the DFT, since the FRFT has the 
same eigenvectors with the Fourier Transform, that is, 
Hermite-Gaussian functions. This can be done by 
developing a commutative matrix that shares a common 
basis of eigenvectors with the DFT. These commuting 
matrices includes the Dickinson-Steiglitz extended-
tridiagonal matrix of the DFT [4], the Pei’s new nearly 
tridiagonal matrix of the DFT [5], the Candan’s matrix 
[6] and Santhanam’s [7]. Although the almost 
tridiagonal matrix takes advantage of fast computation, 
the dense matrix like Candan’s and Santhanam’s can 
obtain HGL eigenvectors in higher accuracy and thus 
considered to be a  better method since the 
eigenfunction of FRFT is Hermite-Gaussian function.  

In this paper we propose a revolutionary method 
using generating matrix, whose time complexity is 
O(N2logN) and the accuracy is comparable to the 
Santhanam’s method, which can obtain the most 
accurate HGL eigenvectors. The generating matrix, like 
an operator, can transform an initial eigenvector into 
another eigenvector. By carefully choosing the 
generating matrix of DFT, we can transform an HGL 
eigenvector into another one, and thus we can acquire 
all the HGL eigenvectors by repeating this procedure. 
   The generating matrix is strongly connected to 
commutative matrix. In fact, the commutative matrix 
can be considered a special case of the generating 
matrix. So it is natural to use generating matrix to 
construct a new commutative matrix. We have 
experimented on many combinations to build the new 
commutative matrix and finally obtain one that can 
outperform the Santhanam’s. 
   This paper is organized as followed. Section 2 will 
discuss the generating matrix of DFT and give an 
example. The new commutative matrix of DFT will be 
proposed in section 3. We will demonstrate the 
experiment result in section 4. The conclusion is given 
in section 5.  

 
2. GENERATING MATRIX OF DFT 

EIGENVECTORS 
 
Define the N× N DFT matrix F as 
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It is well known that  
2 4,= =F J F I      (2) 

where 

1 0 0

0 0 1

0 1 0

0

0 1 0 0

=J    (3) 

and I is the Identity matrix. 
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Suppose a matrix A satisfied that 
= ,   is a constant.λ λJAJ A    (4) 

then SA, the generating matrix of DFT corresponding to 
A is defined as 

1/ 2 1λ −= +AS F AF A     (5) 

Property: If v is an eigenvector of DFT with eigenvalue 
v, then (SA v) is an eigenvector of DFT with 1/2

v. 
Proof: 

1/2 -1( )= ( + )v vλAF S F F AF A  
1/2=( + )vλ AF FA  
1/2 -1 2=( + )vλ AF F JAJF  (By (2)) 

 1/2 -1 2=( + )vλ λAF F AF   (By (4)) 

 1/2 -1=( + ) vλ λA F AF F  

 1/2 1/2 -1= ( + ) vλ λA F AF F  

 1/2= vvλ λAS  
1/2 ( )v vλ λ= AS           Q.E.D. 

Thus given any eigenvector v, multiplied it with SA, we 
can obtain a new eigenvector SAv. And of course we can 
use SAv to generate SA(SAv), another eigenvector of 
DFT. Thus all the eigenvectors can be represented by  

, 0,1, 2,..., 1n v n N= −AS    (6) 

While given an initial HGL eigenvector, in order to 
make the new eigenvector HGL, we have to choose A 
carefully. Luckily, there is a convenient way to select it, 
inspired by continuous Hermite-Gaussian function. 
Recall that continuous Hermite polynomials  
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and the continuous Hermite-Gaussian functions 
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So if we have an eigenvector v approximated to nth order 
Hermite-Gaussian function, and choose SA close to a 
differentiator, we can obtain a new HGL eigenvector. It 
is hard to find a proper A so that SA is close to a 
differentiator. In practice, we can choose 1/2F-1AF 
instead, and treat A in (5) as error.  
To make 1/2F-1AF close to a differentiator, recall that in 
continuous Fourier transform we have: 

{ ( )} ( )
d

F x t j X
dt

ω ω=       

1( ) { { ( )}}
d

x t F j F x t
dt

ω−=                (11) 

So in the discrete case, we can choose: 
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A D             (12) 

And by (4), =-1. So we use 1/2=-j since there is a 
minus sign in (10). 
 
Example: 
Assume N=3, and by (12) 

0 0 0

0 1 0

0 0 1

=

−

D  

And by (5), choosing 1/2=-j 
1/ 2 1λ −= +DS F DF D  
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Suppose the initial eigenvector 
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One can easily verify that 

0
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v =

−

S , which is also an eigenvector of DFT with 

eigenvalue -j, and 
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S , which is also an eigenvector 

of DFT with eigenvalue -1. 
In summary, the generating matrix of DFT is described 
in (5), and the special generating matrix that can 
produce HGL is –jF-1DF+D, where D is described in 
(12). Note that by conventional method, the complexity 
of obtaining all N HGL eigenvectors is O(N3) by 
applying QR algorithm on commutative matrix. Our 
new method, however, reduces the complexity to 
O(N2logN), since D is diagonal and we can use FFT to 
implement F. Thus calculating a new eigenvector costs 
O(NlogN), so obtaining all N eigenvectors costs 
O(N2logN). 
 
3. THE NEW COMMUTATIVE MATRIX OF DFT 
 
In this section, we will focus on S= SD=–jF-1DF+D, 
where D is the diagonal matrix described in (12). We 
want to show that 

T T=FSS SS F                  (13) 
In other words, SST is a new commutative matrix of 
DFT. Thus the eigenvectors of DFT can be calculated 
by utilizing QR algorithm to SST. Since the SST is a full 
matrix, the complexity of this method is O(N3), as the 
conventional ones. We will see in section 4 that the new 
matrix combined with the conventional one can have 
some improvement. To prove (13), we shall first show 
the following lemma: 
Lemma 1:  

1T j −= +S F DF D                (14) 

Proof: 
1( )T Tj −= − +S F DF D  

1( )T T T Tj −= − +F D F D  
1j −= − +FDF D  

1j −= − +F JDJF D  
1j −= +F DF D            Q.E.D. 

Lemma 2: 
1 j− = −FSF S                  (15) 

1T Tj− =FS F S                  (16) 
Proof: 

1 1 1( )j− − −= − +FSF F FDF D F  
1( )j −= − +D FDF  

1j −= − −D F DF  
1( ( ) )j j j−= − + − = −D F DF S  

1 1 1( )T j− − −= +FS F F FDF D F  
1( )j −= +D FDF  

1j −= −D F DF  
1( ) Tj j j−= + =D F DF S          Q.E.D. 

And we can now prove (12). 
Proof: 

1 1 1T T− − −=FSS F FSF FS F  

( ) Tj j= − ×S S  
T= SS  

T T=FSS SS F           Q.E.D. 
 

4. EXPERIMENT RESULT 
 
In this section we will compare the error norms for HGL 
eigenvectors. First we focus on the generating matrix S. 
Figure 1 illustrates the comparison between our method 
and the Santhanam’s[7], while N=31. The initial 
eigenvector of our method is chosen to be the same as 
the 0th order of Santhanam’s HGL eigenvector in 
convenience.  

 
Fig. 1. Error norms for HGL eigenvectors of N=31 

 
One can easily discover that our method is more 
accurate than the Santhanam’s. But surprisingly,  
Santhanam’s commutative matrix method surpass our 
method in accuracy while N>45, especially in low zero 
crossing region. Figure 2 illustrates this difference. 

 
Fig. 2. Error norms for HGL eigenvectors of N=61 
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The reason of this phenomenon is that S is only an 
approximation of the differentiator. When N becomes 
larger, the error propagation becomes more severe. 
Second, we use the new commutative matrix of DFT 
derived in section 3, added with the Santhanam’s matrix. 
It is obvious that any linear combination of 
commutative matrix of DFT is still a commutative 
matrix of DFT. Figure 3 and 4 provide evidence that 
this new matrix outperform the Santhanam’s. 
 

5. CONCLUSION 
 
In this paper we propose an innovative method to 
calculate the HGL eigenvectors, by using a generating 
matrix and an initial HGL eigenvector. The time 
complexity is deduced from O(N3), by implementing 
QR algorithm on commutative matrix, to O(N2logN), by 
applying FFT. The accuracy is comparable to the 
Santhanam’s, and even better while the DFT length N is 
smaller than 45. A new commutative matrix of DFT 
based on the generating matrix is also proposed. The 
new matrix outperforms the Santhanam’s matrix.  

 
Fig. 3. Error norms for HGL eigenvectors of N=91 

 

 
Fig. 4. The enlarged picture of Fig. 3, with the number 

of zero crossing from 35 to 42 

6. REFERENCES 
 
[1]� M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. 
Onural, “Optimal filtering in fractional Fourier 
domains,”  IEEE Trans. Signal Processing, vol. 45, pp. 
1129-1143, July 1997. 
[2] S. C. Pei and W. L. Hsue, “The multiple-parameter 
discrete fractional Fourier transform,”� IEEE Signal 
Processing Letters, vol. 13, no. 6, pp. 329-332, June 
2006. 
[3] S. Chiu, “Application of Fractional Fourier 
Transform to Moving Target Indication via Along-
Track Interferometry” EURASIP Journal on Applied 
Signal Processing, Volume 2005 (2005), Issue 20, 
Pages 3293-3303. 
[4] B. W. Dickinson and K. Steiglitz, “Eigenvectors and 
functions of the discrete Fourier transform,” IEEE Trans. 
Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 
25-31, Feb. 1982. 
[5] S. C. Pei, W. L. Hsue, and J. J. Ding, “Discrete 
fractional Fourier transform based on new nearly 
tridiagonal commuting matrices,” IEEE Trans. Signal 
Processing, vol. 54, no.10, pp. 3815-3828, Oct, 2006. 
[6] C. Candan, “On higher order approximations for 
Hermite-Gaussian functions and discrete Fractional 
Fourier transforms,” IEEE Signal Processing Letters, 
vol. 14, no. 10, pp 699-702, Oct, 2007. 
[7] B. Santhanam and T. S. Santhanam, “Discrete 
Gauss-Hermite Functions and Eigenvectors of the 
Centered Discrete Fourier Transform,” ICASSP 2007, 
vol. 3, pp, III-1385-III-1388. 
[8]  V. Namias, “The fractional Fourier transform and 
its application in quantum mechanics,” J. Inst.Math. Its 
Appl., vol. 25, pp. 241–265, 1980. 
[9] N. M. Atakishiyev and K. B. Wolf, “Fractional 
Fourier–Kravchuk transform,” J. Opt. Soc. Amer., vol. 
14, pp. 1467–1477, 1997 
 

3336


