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Campus de Beaulieu - 35042 Rennes Cedex - France

fuchs@irisa.fr

ABSTRACT
When seeking a sparse representation of a signal on a redundant ba-
sis, one replaces generally the quest for the true sparsest model by an
�1 minimization and solves thus a linear program. In the presence of
noise one further replaces the exact reconstruction constraint by an
approximate one. The �2-norm is generally chosen to measure the
reconstruction error because of its link with Gaussian noise and the
stability and simplicity of the ensuing algorithms, but the �1-norm
may be preferred in some cases when the noise has heavier tails or
in the presence of outliers.

We propose to replace the usual �2 − �1 regularized criterion
by a �1 − �1 regularized criterion and show how to construct a fast
dedicated optimization algorithm that solves this criterion in a finite
number of steps. Since quite often even these fast optimal programs
are considered to be too time consuming, we further develop an ad
hoc sub-optimal algorithm that could be called the �1-matching pur-
suit algorithm.

Index Terms— Sparse representations, optimization, matching
pursuit, continuation methods, �1-norm.

1. INTRODUCTION

There is currently a huge interest in sparse representations which is a
technique that consists in decomposing a signal into a small number
of components chosen from a user-designed over-complete set of
vectors. It is mostly used to obtain a simple approximate model of
a complex signal for denoising [1], compression or coding purposes
[2, 3] in audio or video signal processing. Theoretical investigations
tend to extend its applicability to a variety of new domains, as for
instance, compressed sensing or compressed sampling, in which one
investigates the possibility to sample a signal at a rate much lower
that the Nyquist rate with a controlled loss in information [4, 5, 6].

More formally, given an observation b ∈ Rn one seeks a sparse
representation of b, in terms of the columns ak of a n × m matrix
A, with m � n. Provided A is full row-rank matrix, there are an
infinity of representations x such that b = Ax and to select a sparse
one, one solves the linear program:

min
x
‖x‖1 subject to Ax = b,

where ‖x‖k denotes the �k norm of a vector x, ‖x‖k = [
∑m

1 |xj |k]1/k

for k ≥ 1. Since an approximate reconstruction may be sufficient
and even preferable, it makes sense to replace the linear program by

min
x
‖x‖1 subject to ‖Ax− b‖p ≤ ρp,

with ρp a tolerance to be defined. Quite generally, and especially
so in signal and image processing, p is taken equal to 2, i.e., the

Euclidean norm is chosen as the error metric. For p = 2, the above
criterion is equivalent to the quadratic program [7, 8]

min
x

1

2
‖Ax− b‖22 + h‖x‖1, h > 0. (1)

that has also been considered in many earlier papers in many differ-
ent areas. The quadratic programming routines that solve (1) exactly
are quite time consuming and dedicated fast variants [9, 10, 11] have
been developed. In practice even these “fast” algorithms are too time
consuming in many applications and suboptimal algorithms such as
the often re-discovered matching pursuit algorithm [12] that selects
sequentially the components, are preferred and improved upon [13].

In the sequel we propose to replace the �2-norm in (1) by the
�1-norm

min
x
‖Ax− b‖1 + h‖x‖1, h > 0. (2)

This is a realistic criterion if the additive noise on the observation
vector b follows a Laplace or double-exponential distribution or, in a
Bayesian context and in a different setting, when the prior density on
x is Laplace and one seeks the maximum a posteriori estimate of x.
Following the lines in [9, 10, 11], we will develop an iterative algo-
rithm that solves (2) exactly as well as an ad hoc matching-pursuit-
like algorithm that tends to solve (2) approximatively.

2. THE CRITERION

2.1. Preliminary remarks

Let A be a (n,m) full row-rank matrix with columns aj , we consider
the optimization problem (2)

min
x
‖Ax− b‖1 + h‖x‖1, h > 0,

with ‖x‖1 =
∑

i |xi|, the �1-norm of x. This is a convex program
that can be transformed into a linear program. Since this kind of
transformation yields quite interesting information about the struc-
ture of the optimum let us present it. By introducing slack variables,
the optimization problem (2) becomes

min 1T (r+ + r−) + h1T (x+ + x−) under

A(x+ − x−)− r+ + r− = b and x+, x−, r+, r− ≥ 0,

with 1 a vector of ones of adequate dimension. This is now a lin-
ear program in standard form with 2m+2n variables and n equality
constraints. From basic results in linear programming theory it then
follows that there is a basic feasible optimal solution, i.e., there is a
optimum (x, r) that has generically n non-zero components. If, say,
p < n of these non-zero unknowns belong to x, the remaining n−p
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non-zero components are in r and this in turn tells us that, at the op-
timum, r = Ax− b has p zero components, i.e. Ax is equal to b for
p indexes, and this is achieved using p non-zero components in x.

2.2. Optimality conditions

In order to be able to characterize easily the conditions satisfied by
the optimum of (2), we introduce ∂f(x) the sub-differential of a
convex function f at a point x, it is a set of vectors called the sub-
gradients of f at x. For f(x) = ‖x‖1 one has

∂ ‖x‖1 = {u|ui = sign(xi) if xi �= 0 and |ui| ≤ 1 else} (3)

where xi is the i-th component of x. Note that if f is differen-
tiable at x then ∂f(x) reduces to the gradient.

Since (2) is a convex program, the first order optimality condi-
tions (zeroing the sub-differential) are necessary and sufficient con-
ditions for optimality and one thus gets

Lemma 1. The optimum of (2) is x iff

∃u ∈ ∂‖x‖1, w ∈ ∂‖r‖1, such that AT w + hu = 0 , (4)

with r=Ax− b, the residual or reconstruction error vector. 	

While (4) does not allow to find the optimal x, it will neverthe-
less allow us to derive an iterative algorithm that solves (2) rigor-
ously in a finite number of steps.

2.3. Some specific notations

Let us introduce some notations that will allow us to exploit the in-
formation contained in (4). As above, we denote p the number of
non-zero components in the optimal x, we already known that the
corresponding residual vector r = Ax − b has then p zero compo-
nents.

We partition the optimal x into x̄ its p-nonzero components and
¯̄x its zero components. We partition accordingly 
 the sub-gradient

u into ū and ¯̄u and 
 the (columns in the) matrix A into Ā and ¯̄A.
One has then, for instance, Ax = Āx̄. From (3), it follows that
ū=sign(x̄) and ‖¯̄u‖∞ ≤ 1.

We further partition the optimal r into r its n-p nonzero compo-
nents and r its p zero components. We similarly partition w ∈ ∂‖r‖1
into w which is equal to sign(r) and w which satisfies ‖w‖∞ ≤ 1.

Note that while the partition of x induces a partition of the ma-

trix A into Ā and ¯̄A in term of its columns, the partition of r induces
a partition of A into A and A in terms of its rows.

If both partitions are active the matrix A will thus be partitioned
into four blocks with, e.g., Ā of dimension (p, p).

3. OPTIMIZATION ALGORITHM

Due to the presence of u and w, which belong to sets (see (3)), the
relation in (4) is far from defining the optimal x. It nevertheless car-
ries a lot of information, that is helpful if one is interested in the way
the optimal x varies locally with h. More precisely, if the optimum
is known for a given value of h, the relation (4) defines how the op-
timum varies in the neighborhood of this h and also carries enough
information to precisely locate the boundaries of the neighborhood,
i.e. the interval in h, on which the optima can be extended.

As a matter of fact, it is then also possible to cross these bound-
ary, i.e., to propagate the optima to the next interval. This is the idea
that is used to develop the algorithm.

3.1. Introduction

Assume we have the quadruple x, u, r, w, that satisfies the optimal-
ity condition (4) for a given h, we will extend the quadruple within
an interval in h. To do so, we introduce the two partitions described
above into (4) and the boundaries of the interval will be the values of
h for which these partitions cease to be valid. From the beginning,
we thus know that the following four sub-vectors are invariant in the
current interval : ¯̄x, ū , r and w.

The optimality condition (4) AT w + hu = 0 becomes first
(column-block partition of A)

ĀT w + hū = 0 and ¯̄A
T
w + h¯̄u = 0

which in turn can be further detailed (row-block partition) to yield

Ā
T
w + Ā

T
w + hū = 0 and ¯̄A

T
w + ¯̄A

T
w + h¯̄u = 0. (5)

Though the optimal x does not appear as such in these conditions,
it can be recovered from u and w and their associated partitions.

One has x̄ = Ā
−1

b, and this actually tells us, since its expression is
independent of h, that the optimal x is invariant within the interval.

Taking a close look at the first relation in (5), one observes that
it consists of p equations that actually define the p-dimensional sub-
vector w in terms of h and the other sub-vectors w and ū that are

known and constant within the current interval, since w = sign(r)
and ū = sign(x̄). Provided the square order p matrix Ā is invertible,
which we will assume, the first condition in (5) can be rewritten

w(h) = −hĀ
−T

ū− Ā
−T

Ā
T
w. (6)

This relation, which is of the form w(h) = hW1 + W2, tells us how

the optimal w which satisfies ‖w‖∞ ≤ 1 , varies as a function of h.
Introducing (6) into the second condition in (5) similarly defines

the way ¯̄u varies as a function of h, one gets an expression of the
form

h¯̄u(h) = U1 + hU2. (7)

These two relations are valid as long as w and ¯̄u, that both depend
upon h, remain smaller than one in �∞-norm, see (3). The bound-
aries of the current interval in h are thus the values of h for which
w or ¯̄u attain 1 in the �∞-norm. More precisely as h increases, there
is either a component of w or of ¯̄u that becomes equal to ±1 first,
and the corresponding value of h defines the upper bound of the in-
terval and similarly for the lower bound as h decreases. In summary,
within a given interval, among the eight sub-vectors of the optimal
quadruple x, u, r, w, only two vary with h, namely ¯̄u and w, four
are constant by definition ¯̄x, ū , r and w and the remaining two x̄
and r are constant by necessity.

3.2. Development

The idea of the iterative algorithm is thus to start with h large for
which the optimum is at zero and follow the optimum x(h) for di-
minishing h. The number of nonzero components in x(h) essen-
tially increases as h diminishes and never exceeds n. We will define
boundary values hk for k = 0, 1, 2, .. with hk < hk−1 which
are such that within an interval [hk, hk−1[ the number and signs of
the nonzero components in the optimal x(h) and associated residual
r(h) remain constant. Within each such interval we will get the an-
alytical expression of the optima. If one seeks the optimum of (2)
for a given h one stops the algorithm as soon as the h of interest lies
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within the current interval. The number of steps (intervals) required
is unknown a priori and increases with diminishing h and increasing
number of nonzero components in the optimal x. We have already
seen how to get the boundary values, it remains to indicate how to
start and how to cross such a boundary.

3.2.1. The initial step

Let us check that for h large, the optimum is at the origin. We verify
that x = 0, r = −b together with the associated u and w satisfy (4)

for h ≥ h0 = maxj |aT
j sign(b)|. If x = 0 then u = ¯̄u, A = ¯̄A,

r = −b and, assuming for simplicity that b has no zero component,
w = w = −sign(b). It follows then from the second relation in
(5) that ¯̄u(h) = (1/h) AT sign(b) which is admissible as long as
‖¯̄u(h)‖∞ ≤ 1, i.e., h ≥ h0 = maxj |aT

j sign(b)| which is thus the
first boundary value.

The index of the first component of the optimal x to become
non-zero is j1 = arg maxj |aT

j sign(b)| and its sign is ū = uj1 =

−sign (aT
j1sign(b)).

As h becomes slightly smaller than h0, xj1 jumps to a non zero
value with its sign given by ū = uj1 . This is the value that makes a
first component in r = Ax− b become zero, i.e.,

|xj1 | = min
{i | biuj1

ai,j1
>0}

biuj1

ai,j1

. (8)

This is the only way to keep (4) satisfied for h slightly smaller than
h0. We have thus defined how to cross the boundary h0 and how
to further characterize all the quantities appearing in (5), i.e., (6, 7)
within this first h-interval whose lower bound is not yet known.

3.2.2. The standard step

At the beginning of a standard step, one knows the optimal x and
all the other quantities in the current interval whose lower bound is
however not known. The first task is thus to find this next boundary
value, we already indicated how to get it. A boundary is hit either
as - event 1 - a component in ¯̄u (7), or as - event 2 - a component
in w (6), becomes equal to ±1. It is thus an easy task to find this
boundary. In case the h of interest lies in the current interval, the
procedure stops and the optimal x is the constant x valid for the
whole interval, otherwise to fulfill the current step we need to define
how to cross this boundary.

For event 1, we denote jk the index of the component of x that
becomes non zero and denote ujk its sign that is already known.
We modify the x induced partition of A and u accordingly. Clearly
¯̄x looses a component which enters x̄, while ū gains a component
equal to ujk . We are now in a transition where Ā is no longer square
and has dimension, say, (p × p + 1) and we need to make another
change to recover a state in which the optimality conditions will be
satisfied over the next interval. To do so we have to make Ā square
again. One can either (add a line) activate a new constraint, i.e.,
use the new unknown xjk to zero a component in r as we did at
the end of the initial step above or (remove a column) one can zero
an unknown, i.e., take advantage of the entrance of xjk to remove
a previously non-zero unknown while keeping the same constraints
active. There are n = (n− p) + p potential cases to consider.

For event 2, we denote ik the index of the component of the
residual vector r that becomes non-zero and wik its sign. This means
that constraint ik which was active becomes inactive and we now
modify the r induced partition in A and w. A line is removed from
Ā and added to Ā, again this matrix is no longer square and has
dimension (p − 1 × p). To complete the transition phase we are

in, one can either zero one of the p unknowns in x̄ or activate a
new constraint among the n−p previously inactive constraints in Ā.
There are again n cases to test at the most.

In both events, since there is only one optimal decision, one
stops the research as soon as the case under test satisfies the con-
ditions in (4) within the next interval.

3.2.3. Relations to previous works

Several recent papers have proposed similar path-following meth-
ods for solving (1), [9, 10, 11]. All these methods are related to
continuation techniques, which have also been studied in the opti-
mization literature [14]. When the solution is sparse, i.e. when the
(unknown) optimum has just a few non-zero components, they are
indeed very fast but their computational complexity increases more
than linearly in the number of non zero components in the optimum.
To our knowledge, however, no such algorithms have been proposed
for the criterion (2) except for some preliminary remarks in [15].
Note also that these algorithms are fully different from those pre-
sented in [16] and quite recently in [17] where the same criterion is
considered and a connexion between the classical CLEAN algorithm
[18] and �1-denoising is proposed.

4. �1 MATCHING PURSUIT

Having defined an exact way to solve (2), we now propose a approx-
imate but much faster way to solve a similar problem.

Matching pursuit (MP) is an ad hoc way to get rapidly a more
or less sparse representation of a vector b as a linear combination
of a small number of columns aj (assumed to be of unit Euclidean
norm) of the matrix A. For completeness we remember the basic
MP algorithm.

At each step, the MP algorithm fits to the current residual (recon-
struction error), say rk−1 the most correlated vector of the redundant
basis: jk = arg max

j
|aT

j rk−1|,
it then subtracts from rk−1 a weighted version of this vector. The
weight minimizes the norm of the new residual vector rk

xk = min
x
‖rk−1 − ajkx‖22

and one gets rk = (I − ajkaT
jk

)rk−1.

One starts with r0 = b and stops when the Euclidean norm of the
residual is smaller than a user-fixed threshold. This method is clearly
�2-based, this appears in the choice of the correlation, the value of
the optimal weight and the stopping criterion.

In order to develop an �1-based matching pursuit algorithm,
one replaces the Euclidean ‖x‖22 = xT x by the �1-norm ‖x‖1 =∑ |xi| = xT sign x, i.e., in some sense one replaces the usual scalar
product xT y by a pseudo scalar product xT sign y. The choice of
the most correlated vector becomes then quite naturally

jk = arg max
j
|aT

j sign rk−1|
and the resulting vector ajk is indeed the most efficient column-
vector in A if the objective is the (local )rate of variation of the �1-
norm of rk−1 but is not (necessarily) the one that yields the largest
decrease of the cost function. To find the column aj that leads to the
largest possible decrease one would have to solve an optimization
problem for each column (see (9) below) and keep the best but this
is too time-consuming for an approximate method as this one. Note
that while for the basic (�2-norm) MP, the most efficient column lo-
cally is also the one that yields the largest decrease, this is not the
case in the �1-norm case.
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In case rk−1 has one or several zero components, the most effi-
cient locally or equivalently the most correlated vector is given by,
using the notations of a rk−1-induced partition :

jk = arg max
j
{ |aT

j sign r (k−1)| − ‖a
j
‖1 } .

The resulting choice is however only valid if the value of the asso-
ciated maximum is positive. Otherwise, there is no way to diminish
‖rk−1‖1 using just one column, i.e. the optimum attainable with this
ad hoc global scheme is reached.

Once the next column entering the selection, say ajk , is identi-
fied, the choice of the optimal weight, say xjk , to be assigned to it
is non unique. One can choose the smallest weight x that makes a
first component in rk = rk−1 − xajk zero, arguing that for larger
weights the rate of decrease will be smaller and another vector in the
basis possibly more efficient. The computation is quite simple but it
appears in practice that this choice does not work. It introduces cy-
cling (e.g. a same couple of vectors is used in turn a large number of
times with infinitesimal steps before proceeding to another vector)
and that the resulting algorithm converges extremely slowly.

We thus propose to take xjk = arg minx ‖rk−1−ajk x‖1. This
optimization problem has no analytical solution but can be solved
quite easily by inspecting all the values of x that make a component
zero in rk. The algorithm is

min
i∈Ik

‖rk−1 − ajk sign (aT
jk

sign r (k−1)) |xi| ‖1 (9)

with |xi| =
r (k−1)(i)

ajk
(i)sign (aT

jk
sign r (k−1))

and
Ik = { i | r (k−1)(i)

ajk
(i)sign (aT

jk
sign r (k−1))

> 0}.

The resulting global scheme works in general, i.e. proceeds until
the current residual vector rk has �1-norm below the fixed threshold.
There are some cases where it fails to converge, it stops because no
single column aj allows to further diminish ‖rk‖1. Further inves-
tigations are under progress to evaluate the global properties of this
�1 matching pursuit scheme with stopping criterion on ‖rk‖1 and to
define an alternative in case the threshold is not attained.

5. CONCLUDING REMARKS

We have considered the following �1- �1 penalized criterion

min
x
‖Ax− b‖1 + h‖x‖1, h > 0.

We have shown how to construct a fast algorithm that minimizes it
by actually following its optimum for decreasing values of h. and
stopping the procedure when the optimal h is attained. As h de-
creases, one observes that, roughly speaking, the number of non-
zero components in the optimal x increases. If the number of non-
zero component in the optimum is small, which is generally the case
in sparse representations applications, the algorithm we propose is
much faster than linear programming routines that can be applied to
this criterion. If, in case of a very large number of basis vectors,
even faster algorithms are needed one must resort to approximate
solutions and we also propose an ad hoc �1-matching pursuit algo-
rithm.

So far we have applied this criterion to image denoising and cod-
ing and in both cases the results are promising. We also plan to inves-
tigate its applicability in decoding linear codes. Linear programming
and sparse representations approaches have already been considered
in this context [19, 20].
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