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ABSTRACT

We consider the problem of Time Difference of Arrival

(TDOA) estimation for cyclostationary signals in additive

white Gaussian noise. Classical approaches to the problem

either ignore the cyclostationarity and use ordinary cross-

correlations, or exploit the cyclostationarity by using cyclic

cross-correlations, or combine these approaches into a mul-

ticycle approach. Despite contradicting claims in the litera-

ture regarding the performance-ranking of these approaches,

there has been almost no analytical comparative perfor-

mance study. We propose to regard the estimated (ordinary

or cyclic) correlations as the “front-end” data, and based

on their asymptotically Gaussian distribution, to compute

the asymptotic Cramér-Rao bounds (CRB) for the various

combinations (ordinary/single-cycle/multi-cycle). Using our

Cyclic-Correlations-Based CRB (termed “CRBCRB”), we

can bound the performance of any (unbiased) estimator which

exploits a given set of correlations. Moreover, we propose

an approximate maximum likelihood estimator (with respect

to the correlations), and show that it attains our CRBCRB

asymptotically in simulations, outperforming the competitors.

Index Terms— TDOA, cyclic-correlations, multi-cycle.

1. INTRODUCTION

Estimation of time difference of arrival (TDOA) of a source

signal to two spatially-separated sensors is a fundamen-

tal problem in passive emitter location systems. Classical

approaches to this problem assume wide-sense stationarity

(WSS) of the source signal, and use the peak-location of the

(unfiltered or filtered) observations’ cross-correlation (CC) as

an estimate of the TDOA. The possible use of general pre-

filters spans a family of “generalized CC” (GCC) estimators,

introduced by Knapp and Carter [1] in 1976. Knowledge of

the power spectral distributions of the source and noise sig-

nals allows to construct pre-filters realizing (under a Gaus-

sianity assumption) the maximum likelihood estimate (MLE),

which is asymptotically efficient [1].

Digital communication signals exhibit inherent periodic-

ity (due to their modulation, sampling and coding), which

gives rise to periodically-varying statistical characteristics,

and are therefore termed cyclostationary. The periodicity fre-

quency is termed cyclic frequency. The Fourier coefficient (at

the cyclic frequencies) of the time-varying correlation func-

tion (at each lag) are termed cyclic correlations.

A family of TDOA estimation algorithms for cyclosta-

tionary sources was introduced by Gardner in [2], [3] and

used cyclic (rather than “stationary”) cross-correlations. The

principal motivation behind the use of such algorithms is

their inherent immunity against interference and noise sig-

nals which are either not cyclostationary, or do not share

the cyclic frequency of the cyclostationary signal-of-interest

(SOI). One of the most successful cyclostationary algorithm

is the “spectral coherence alignment” (SPECCOA) [2], [3].

Algorithms which exploit more than one cyclic frequency are

called multi-cycle algorithms, e.g., the Multicycle Spectral

Correlation Product Estimator (MCSCPE), by Gardner [4].

To date, the performance evaluation for cyclic TDOA

algorithms in an interference-free environment was mainly

restricted to empirical simulation studies. To the best of

our knowledge, almost no analytic performance analysis ap-

peared in open literature, with the recent exception of [5], in

which some small-error analysis for a particular multi-cycle

algorithm was presented. Nevertheless, there seems to be

some disagreement as to which approach (single-cycle, multi-

cycle, ordinary cross-correlation) is theoretically preferable in

an additive white Gaussian noise (AWGN)-only environment.

For example, in ([2], p.1170) Chen and Gardner claimed,

regarding single-cycle algorithms, that they “... outperform
conventional TDOA algorithms ... when the only corruption
to the SOI is the receiver noise”. Using empirical simulation

results, they also maintained ([3], p.1193) that SPECCOA far

outperforms conventional GCC in AWGN environments. The

intuition behind those claims is that “these signal-selective
methods discriminate against not only interference but also
noise (and , more generally, anything that is not cyclostation-
ary with the cycle frequency being used” ([3], p.1194).

Conversely, in a more recent comparison (by Gisselquist,

[6]) between stationary and cyclostationary TDOA estima-

tors in a wideband cyclostationary interference environment,
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the single-cycle algorithms were actually found to perform

much worse than the best stationary algorithms. Moreover,

Gisselquist pointed out a few fundamental flaws in previous

experiments, such as failing to apply sub-sample interpolation

and comparing against non-optimal stationary methods.

The purpose of this paper is to take an analytic approach in

trying to resolve these contradictions, by deriving analytical

asymptotic bounds on the performance of cyclic correlation-

based TDOA algorithms in an AWGN environment. The

main difficulty in deriving analytical results for cyclostation-

ary signals stems from the fact that the probability distribution

of the cyclostationary data is often too involved to formulate.

We circumvent this problem by recognizing that the front-end

data for these TDOA algorithms are the estimated cyclic cor-

relations. Thus, we may consider only the estimated cyclic

correlations vector, rather than work with the raw data sam-

ples. Fortunately, the asymptotic distribution of this vector is

(under some reasonable assumptions) jointly complex Gaus-

sian, thanks to an extension of the Central Limit Theorem, [7],

regardless of the original data distribution. As such, compu-

tation of its mean and covariance, which can both be derived

from the moments of the raw-data, allows a tractable deriva-

tion of the associated Cramér-Rao bound (CRB).

The resulting bound, which we term the “Cyclic-

coRrelations-Based CRB” (CRBCRB) will serve as a lower-

bound on the performance attainable by any (unbiased) es-

timator which is based solely on the estimated cyclic corre-

lations. Of course, it would not bound the performance of

general (unbiased) estimators exploiting the full raw data at

the sensors, since generally the estimated correlations are not

a sufficient statistic with respect to the raw data. It is certainly

conceivable that there might exist better estimators, which

would exploit the raw data differently, in a way which is not

based on the estimated cyclic correlations. Nevertheless, the

CRBCRB would serve as a bound on the performance which

can be attained from the estimated cyclic correlation alone,

be it by SPECCOA, MCSCPE, GCC (which is a particular

case of a cyclic correlation, with zero cyclic frequency), or

any other correlations-based algorithm.

Moreover, we would be able to exploit the knowledge of

the estimated cyclic correlations’ asymptotic distribution, so

as to propose an approximate MLE, (approximately) maxi-

mizing the likelihood of these estimated cyclic correlations

(rather than the likelihood of the raw data). This estima-

tor would asymptotically approach the CRBCRB, and would

therefore offer the (asymptotically) optimal exploitation of

the chosen estimated cyclic correlations.

2. SOME PRELIMINARIES

Consider the following baseband signal model:

x(t) = s̃(t) + ṽ1(t)
y(t) = s̃(t − D) + ṽ2(t) (1)

where ṽ1(t) and ṽ2(t) are stationary complex white Gaussian

noise processes, uncorrelated with s̃(t), which is the cyclosta-

tionary SOI, whose cycle-period is denoted T . We denote the

fundamental cyclic frequency of s̃(t) by Fd
�
= 1

T . D denotes

the TDOA parameter which we wish to estimate.

Assume now that the received signals x(t) and y(t) are

low-pass filtered and then sampled with sampling period Ts =
T/P (where P ≥ 1 is some integer),

x[n] = x(nTs) = s[n] + v1[n]
y[n] = y(nTs) = sd[n] + v2[n], (2)

where s[n] = s(nTs), sd[n] = s(nTs − D) and v1[n] =
v1(nTs), v2[n] = v2(nTs), such that v1(t), v2(t) and s(t)
are the filtered versions of ṽ1(t), ṽ2(t) and s̃(t), respectively

(note that s(t) remains cyclostationary with the same cyclic

frequency after the filter). If the receiver’s bandwidth is 1
Ts

,

then v1[n], v2[n] are white. When the receiver’s output is

sampled at the symbol rate (P = 1), the resulting sequences

x[n], y[n] are stationary. At a higher (P > 1) sampling rate,

the resulting sequences x[n], y[n] are cyclostationary.

The cross-correlation Ryx[n; τ ]
�
= E {y[n + τ ]x∗[n]} is

periodic in n with period P , and therefore admits a Fourier-

series expansion (at each τ ), in the cyclic correlations

Rk
yx[τ ] =

1
P

P−1∑
n=0

Ryx[n; τ ]e−j2π( k
P )n (3)

(for k = 0, .., P −1). The discrete-time cyclic frequencies (of

s[n]) are αk = k
P for k = 0, .., P − 1. A standard estimate

of the cyclic correlations from a finite number of samples N
takes the form

R̂α
yx[τ ] =

1
N

N−1−τ∑
n=0

y[n + τ ]x[n]∗e−j2παn, (4)

which under the so-called “mixing conditions” is asymptoti-

cally unbiased and mean-square consistent [7]. Moreover, if a

finite number of estimated cyclic correlations (at various lags

and cyclic frequencies) are concatenated into a single random

vector, that vector would be (asymptotically) jointly complex

multivariate Gaussian (CMVG).

The general distribution of a CMVG random vector z is

characterized by its mean vector μz
�
= E[z] and two covari-

ance matrices: The Hermitian, positive semidefinite covari-

ance C
�
= E[(z−μz)(z−μz)H ] and the complex symmetric

J
�
= E[(z − μz)(z − μz)T ], complementary covariance ma-

trix. Alternatively, we may denote z = x + jy, where x and

y are real-valued jointly Gaussian random-vectors, and define

a real-valued Gaussian random-vector z̃ = [xT ,yT ]T , whose

mean is μz̃
�
= [μT

x , μT
y ]T and whose covariance is given by

Cz̃
�
=

[
Cxx Cxy

Cyx Cyy

]
=

1
2

[
Re{C + J} Im{J − C}
Im{C + J} Re{C − J}

]
.

(5)
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3. ASYMPTOTIC MEAN AND COVARIANCE OF
THE ESTIMATED CYCLIC CORRELATIONS

In order to obtain an asymptotic expression for the CRBCRB,

all we need are the mean and covariance of the vector of con-

catenated estimated cyclic correlations. For each element of

the estimated vector we have (from (4)),

R̂k
yx[τ ] = R̂k

sds[τ ] + R̂k
sdv1

[τ ] + R̂k
v2s[τ ] + R̂k

v2v1
[τ ], (6)

with obvious notations for the four components. Due to the

assumption that the noise processes and the SOI are all mutu-

ally uncorrelated, the mean of R̂k
yx[τ ] is readily given by

E
{

R̂k
yx[τ ]

}
= Rk

sds[τ ] = RkFd
ss (τ · Ts − D). (7)

The covariance and the complementary covariance between

any two elements can be easily expressed in terms of these

elements’ second joint-moments and their means.

In order to find the second joint moments, we first need to

specify the statistical model for the SOI (as mentioned earlier,

the noise processes v1[n] and v2[n] are always assumed to be

zero-mean, white circular complex-Gaussian; we shall further

assume that their variances are σ2
1 and σ2

2 , respectively). To

this end, we shall employ the standard Pulse Amplitude Mod-

ulation (PAM) model for the SOI:

s̃(t) =
∞∑

k=−∞
a[k]p(t − kT ) (8)

where p(t) is a square-integrable pulse and {a[k]} is a

zero-mean independently and identically distributed (i.i.d)

symbols-sequence, with values drawn from a circular

complex constellation with unit variance, i.e., σ2
a =

E
{|a[k]|2} = 1.

PAM signals with root raised-cosine (RRC) pulse shape

(with roll-off parameter R) are strictly band-limited with

single-sided bandwidth B, as defined in [8]. For maximal

roll-off (R = 1) we get B = 1
T , so if Ts ≤ 1

4T (or P ≥ 4), the

low-pass filtering has no effect; Consequently, s(t) = s̃(t),
and the discrete-time cyclic correlation equals the sampled

continuous time cyclic correlation Rk
ss[m] = RkFd

ss (mTs),
which for PAM signals is given by (see [9], p.660):

Rα
ss(τ) =

1
T

∞∫
−∞

p(t + τ)p∗(t)e−j2παtdt =

=
1
T

∞∫
−∞

P (f)P ∗(f − α)ej2πτfdf, (9)

where P (f) is the Fourier transform of the p(t). Since for

RRC pulse-shapes P (f) vanishes for |f | ≥ 1+R
2T , the product

P (f)P ∗(f − k
T ) will be nonzero only for k = 0,±1, which

means that PAM signals with RRC pulse shape will only have

three cyclic frequencies αk = kFd, k = 0,±1.

It is shown in [10] (the derivation is omitted due to lack

of space) that under these model assumptions the covariance

Ck1,k2
yx,yx[τ, �] � cov

{
R̂k1

yx[τ ], R̂k2
yx[�]

}
is given by

Ck1,k2
yx,yx[τ, �] = Ck1,k2

sds,sds[τ, �] + R(k1−k2)Fd
ss ([τ − �]Ts)·

· 1
N

(
σ2

1ej
2π
P (k1−k2)(�−D/Ts) + σ2

2ej
2π
P k2(τ−�)

)

+
1
N

σ2
1σ2

2δ[τ − �]δ[k1 − k2], (10)

where Ck1,k2
sds,sds[τ, �] is the signal-term covariance (see [11]):

Ck1,k2
sds,sds[τ, �] =

1
N

1∑
k=−1

∞∑
m=−∞

RkFd
ss ([m + τ − �]Ts)·

· R(k−k1+k2)Fd
ss (mTs)∗ · e−j

2π
P (k1m−k(�−D/Ts)). (11)

Estimated cyclic correlations complementary covariance ma-

trix Jk1,k2
yx,yx[τ, �] � cov

{
R̂k1

yx[τ ],
(
R̂k2

yx[�]
)∗}

, which, due to

the circularity of the noise distribution does not contain any

noise-related terms, is given by

Jk1,k2
yx,yx[τ, �] =

1
N

1∑
k=−1

∞∑
m=−∞

RkFd
ss ([m + τ + �]Ts − D)·

· R(k1+k2−k)Fd
ss (−mTs − D)e−j

2π
P (k−k2)(m+�) (12)

4. THE CYCLIC-CORRELATION-BASED CRB

The Fisher information matrix (with respect to D) is given by

I(D) =
dμT

z̃ (D)
dD

C−1
z̃ (D)

dμz̃(D)
dD

+

0.5 · Tr
[
C−1

z̃ (D)
dCz̃(D)

dD
C−1

z̃ (D)
dCz̃(D)

dD

]
,

where the observation vector z̃ is the concatenation of the real

and imaginary parts of the estimated cyclic correlations vec-

tor, and its mean and covariance are given by the expressions

(7), (5), (10), (11) and (12) above.

To compute the information matrix (actually a scalar

quantity in our case), we also need the derivative of the cyclic

correlation Rα
ss(τ−D) with respect to D - which can be com-

puted for any pulse-shape, e.g., by using numeric integration

in (9), multiplying the integrand by −j2πf .

Thus, the CRBCRB (on the mean-squared error) for

estimating D from any combination of estimated cyclic-

correlations can be readily obtained as 1/I(D), by substitut-

ing all of the relevant expressions in I(D) above.

Fig.1 depicts the CRBCRB obtained from using 17 lags

8 ≤ τ ≤ 8) of the following correlation types: Single-cycle
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Fig. 1. Single-cycle and Multi-cycle CRBCRB vs. SNR for RRC Gaussian-symbols

PAM signals with two different roll-offs.

with cyclic frequency α = Fd (k = 1); Single-cycle with

cyclic frequency α = 0 (k = 0) - this case is equivalent to

the use of ordinary (stationary) cross-correlation; And multi-

cycle with cyclic frequencies α = 0, Fd,−Fd (k = 0,±1).

The results are presented vs. the signal-to-noise ratio1 for

PAM signals with two roll-off values, with P = 4.

We observe that the bound for a single-cycle method using

cyclic (α = Fd) correlation predicts significantly worse opti-

mal performance than for a method using “ordinary” (α = 0)

correlation. For typical roll-off R = 0.5 the loss is ∼ 4.8[db]
and for the highest roll-off R = 1 (not a very bandwidth-

efficient signal) the loss is ∼ 2.6[db]. The gain from us-

ing a multi-cycle approach (relative to ordinary correlations)

for RRC with R = 0.5, 1 is ∼ 2.2[db], 3[db] (resp.). Thus,

with the lower roll-off, the feature strength of the cyclic

(α = ±Fd) correlations decreases, so that their potential con-

tribution to improving the performance of the ordinary corre-

lation becomes more marginal.

5. A NOVEL MULTI-CYCLE APPROXIMATE MLE

Having specified the asymptotic distribution of the estimated

cyclic correlation values, an approximate MLE may be ob-

tained by maximizing (with respect to D)

L(D)
�
= − log |Cz̃(D)|−(z̃−μz̃(D))T C−1

z̃ (D)(z̃−μz̃(D)).
(13)

Ignoring the usually negligible contribution of log |Cz̃(D)|,
the estimator reduces to the solution of a nonlinear Weighted

Least Squares problem, which we solve using a Quasi-

Newton search, following an initial guess obtained, e.g., from

an ordinary CC-based TDOA estimate.

Under common regularity conditions, our MLE should

asymptotically attain our CRBCRB (possibly outperforming

any competing methods which use the same cyclic correlation

values differently), as can indeed be observed in the support-

ing simulation results in Fig.2.

1Equal noise power was used for both sensors, σ2
1 = σ2

2 .
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Fig. 2. MSE of different TDOA estimators for an RRC Gaussian-symbols PAM

signal with roll-off R = 1 in AWGN, with P = 4 and observation length N = 8192

(2048 symbols). Each result reflects the average of 800 independent trials.

6. CONCLUSIONS

We derived a new lower-bound on the performance attainable

by any unbiased TDOA estimator which is exclusively based

on the estimated cyclic (and/or ordinary) correlations. We

thereby showed analytically, that at least for the considered

RRC PAM signal in AWGN, single-cycle cyclic correlations

are less informative (admit a higher bound) than ordinary CC

(single-cycle with zero cyclic frequency). We also proposed

a novel correlations-based approximate MLE, whose perfor-

mance approaches the predicted bound (asymptotically), out-

performing other competitors.
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