
A NEAR OPTIMUM DETECTION IN LPHA-STABLE IMPULSIVE NOISE 
 

Xutao Li, Yongquan Jiang 
Dept. of Elec. Eng., Shantou University, 

Shantou, Guangdong, P.R. China 

Miao Liu 
Dept. of Elec. and Computer Eng., Old Dominion 

University, Norfolk, VA, USA 
 

ABSTRACT 
 
Alpha stable distribution has gained much attention due to 
its generality to represent heavy-tailed and impulsive 
interference. In such non-Gaussian interference, the 
detection key is to evaluate the zero-memory nonlinearity 
(ZMNL) function of locally optimal (LO) detector. 
Unfortunately, there is no closed form expression for the 
probability density function (PDF) of alpha-stable 
distributions. Hereby, sub-optimum ZMNL function is 
adopted as an unavoidable approximation, such as classical 
Cauchy and Gaussian-tailed ZMNL (GZMNL). In this 
paper, an algebraic-tailed ZMNL (AZMNL) with a concise 
form is proposed. Based on such ZMNL, derived detector 
has near optimal performance in various impulsive noise 
environments. Furthermore, using Bi-parameter CGM 
(BCGM), a concise approximate expression for PDF of 
symmetric -stable (S S) distribution, the test threshold can 
be evaluated according with preset false alarm ratio easily. 
 

Index Terms— Signal detection, Impulsive noise, -
stable distribution
 

1. INTRODUCTION 
 
Signal detection, which detects the presence of a signal in 
noisy observations, is a classical problem that has to be 
implemented in a variety of applications, such as ones being 
in radar, sonar and communications. The signal detection 
problems usually are viewed as problems of hypothesis 
testing in statistical inference [1] in which the generalized 
likelihood ratio test (GLRT) is the most widely accepted 
method of solution. In most of previous work on detection, 
it has been assumed that the signal is embedded in Gaussian 
noise and the detectors are designed accordingly, since the 
Gaussian noise assumption has been generally justified with 
the central limit theorem and with the analytical 
convenience of the Gaussian probability density function 
(PDF) which leads to linear and hence tractable equations. 
However, there are many cases, in which the noise is 
decidedly non-Gaussian. Non-Gaussianity often results in 
significant performance degradation for detector designed 
under the Gaussian assumption [1, 2]. 

In a detection problem, optimal processing is feasible 
only if the noise PDF is analytically known and tractable. 
Unfortunately, there are no closed forms for the probability 

densities of -stable distribution except for three special 
cases, say, Gaussian, Cauchy and Pearson distribution [3]. 
Therefore, the general approach to handle such impulsive 
input is to develop a limiter to clip the noise. In fact, such 
limiter essentially is equivalent to a zero-memory 
nonlinearity (ZMNL) function (optimum or sub-optimum) 
derived from Neyman-Pearson lemma [1]. Since closed 
PDF of -stable distribution does not exist, deducing 
analytical optimum ZMNL function is not an easy task. To 
overcome such difficulty, a tractable approximation for 
ZMNL function is unavoidable. Several sub-optimum 
ZMNL have been proposed in prior work, such as hole-
puncher, Cauchy, Limiter plus integrator (i.e. soft-limiter) 
[2] and Gaussian-tailed [4] ZMNL. However, these ZMNL 
based detectors are not always valid in various impulsive 
noise environments. In this paper, we suggest an algebraic-
tail ZMNL (AZMNL) and develop a concise representation 
of AZMNL by the mean square error (MSE) criterion in [5]. 
Simulation results illustrate that proposed method achieves 
near optimum performance in various impulsive 
interference. 

In a radar or sonar system, to achieve data adaptive 
detection, the threshold must be adjusted according to the 
interference to maintain constant false alarm ratio (CFAR). 
This requires evaluating the test threshold according preset 
false alarm ratio (FAR). An analytical PDF is expected in 
solving such problem as it is the same as in designing a 
detector. Recently, a novel and concise approximate PDF of 

-stable distribution, BCGM [6], has been presented. Using 
such an absolute analytical expression, the relation between 
test threshold and FAR can be evaluated handily, which 
indicates that the detector is adaptive in CFAR sense. 

In the next section we review the basic detection problem. 
Section 3 presents the algebraic-tail ZMNL (AZMNL). In 
section 4, we show how to evaluate the test threshold to 
maintain CFAR in terms of BCGM. Final section shows 
experimental results. 
 

2. THE DETECTION PROBLEM FORMULATION 
 
Detection of weak deterministic signal can be formulated as 
a hypothesis-testing problem [1]. 
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where 0H is the null hypothesis that indicates the presence 
of the signal and 1H  indicates the non-presence of the signal 
in the observation. x  represents the received signal, A  is 
the amplitude of the deterministic signal s  and the w is IID 
noise subject to symmetric -stable distribution (S S). 
When 0A , the detected signal become a weak signal. 
The classical approach for weak signal detection is usually 
based on the Neyman-Pearson (NP) lemma [1], such as 
Locally Optimum (LO) detector [1]. Based on NP lemma, 
the test statistic of optimum detector is given by [2] 
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where , ( )f x k  is the S S’s PDF. It compares to a preset 
threshold . When NP , the detector decides that the 
signal s  presents. For weak signal, the log-likelihood test 
for Locally Optimum (LO) detector is given by 
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where ( )g x is the locally optimum ZMNL function defined 
as 
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Because , ( )f x  does not have a close form, its optimum 
ZMNL function does not have a simple analytical 
expression and needs to be evaluated numerically by FFT. 
There are two popular sub-optimal detectors to deal with -
stable interference, Cauchy and Gaussian-tailed ZMNL 
(GZMNL) based detector. As 1 , the interfering noise is 
Cauchy and the ZMNL function satisfies [2] 
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As to Gaussian-tailed ZMNL (GZMNL), it is defined as [4] 
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where 3 median( )r x is the breakpoint and 
/ 0.7r controls the tail behavior. It is continuous and 

taking on exponentially decaying tails. Furthermore, it plays 
the role of transforming the stable noise to finite variance 
noise. 
 

3. ALGEBRAIC-TAILED ZMNL 
 
Most impulsive noise subjects to S S with 1 2 . Since 
the standard S S density function can be represented by 
asymptotic series [2] 
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as 1 2 , we have, near 0x , 23/1( ) 1/
2

f x x  

and 3/
'( )

x
f x . Thereby, the optimum ZMNL 

function in the vicinity of 0x  satisfies 
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which indicates that the ZMNL of S S r.v. is linear near 
0x with slope (3 / ) / (1/ )k . Moreover, the 

distributions of S S density in tails have the approximate 
property as below [3] 
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by ( 1)
, ( | ) ( ) / 2f x x C  and , '( | )f x x  

( 2)( ( 1) ) / 2C , which indicates that the -stable 
distribution has an approximate algebraic-tail as ( 1) / x  
[7]. Hence, we suggest a generic algebraic-tailed ZMNL 
(AZMNL) to approximate the true S S’s ZMNL as a 
continued function 
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where (3/ ) / (1/ )k , ( )/K k  and ( )K  is a 
polynomial expression on . To obtain the near optimum 

( )K , we adopt the mean square error (MSE) criterion 
suggested by S. Zozor et al. [5]. The criterion leads to the 
minimization of 
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Fig.1 The comparisons between various optimum ( )K   
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By such criterion, we find that the optimal function 
satisfies 4 3 2( ) 13.0859 68.4388 +134.7758 115.9855K  
+37.6752 . However, a concise representation is always 
expected in real practice. To obtain a near optimal and 
concise expression, we compare the optimum ( )K  with 
three expressions, namely 1 , 2 1and 2 as shown in 
Fig.5. From the results, it is easy to see that 2( )K  is 
the closest expression to the optimal ( )K and reaches 
better approximation as 1.7 . Hence it can be viewed as a 
brief version of ( )K . 
 

4. CALCULATE THE TEST THRESHOLD 
 
Let us consider a LO detector with ZMNL function ( )zg x . 
Under 0H assumption and for IID multi- sample case, the 
mean of ( )T x , 0( ); 0E T x H . And the variation of ( )T x  
satisfies 
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where N is the length of testing block, ( )Zg x is ZMNL. For 
the fixed detection threshold , the false alarm ratio and 
detection threshold satisfy the following relations 

FAP Q
N

                                             (15) 

1( )FANQ P                                           (16) 
Hereby, we can evaluate the detection threshold  with 
respect to preset FAP  by equation (15). 

 
Fig.2 FAR curves as functions of test threshold  

 
Via equation (13) and (14), the general relation 

between false alarm ratio and test threshold can be 
developed for sub-optimum detector. In addition, we adopt 
the BCGM as the approximation PDF of S S interference to 

decrease the computation complexity in calculation on 
equation (14). The BCGM is defined as [6] 
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where 2 / / 2
2 / 2

p p

p p
 is the mixture ratio

0.25p , is the scale exponent of SS  distribution. 
Using such a concise expression, the variations of test 
statistic can be evaluated by equation (14) more easily, 
which is significant in a practical system. And then the false 
alarm ratio (FAR) according various value of test threshold 

 can be evaluated by equation (15). In order to examine 
the evaluated false alarm ratio, we perform Monte-Carlo 
simulations. When noise subjects to standard S S  with 

1.5 , we chose 20N samples per block and perform 
106 test simulations. For each sub-optimum ZMNL: 
AZMNL, GZMNL and Cauchy based detector, the real false 
alarm ratio calculated by test simulation is compared with 
the evaluated one by equation (15) concerning various test 
threshold. The experimental results are shown in Fig.2 in 
which we can observe that the curves obtained by test 
simulations are very close to the results evaluated by 
equation (15). Only minor error appears in the region of 
lower FAR, which relates the limited number of simulations. 
Consequently, the test threshold can be evaluated with 
preset FAR via equation (16). This indicates that the 
corresponding detector has the ability to adjust its test 
threshold according preset FAR and noise parameters 
adaptively. 
 
5. SIMULATIONS FOR WEAK SIGNAL DETECTION 
 
The experimental simulations are performed to demonstrate 
the validity of suggested AZMNL based detector. Without 
loss of any generality, the noise is assumed as standard S S 
noise and the detected signal is considered as known 
deterministic direct current signal in the following 
experiments.  

 
(a) 1.2  
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We evaluate the detection probability of AZMNL based 
detector, and make comparison with the optimum detector, 
Cauchy and GZMNL based detector. The results are based 
on 10000 test blocks of length N=20. The experiments are 
concerned with the corresponding receiver operating 
characteristics (ROCs) of detectors versus false alarm ratio 
with respect to 1.2,1.5,1.8  as 5.0A  (weak signal) 
respectively. The false alarm ratio is restricted within 0.001 
to 0.45. The experimental results are shown in Fig.3. 

 
(b) 1.5  

 
(c) 1.8  

Fig.3 Probability of detection versus false alarm ratio  
 

From above results, one can clearly observes that 
AZMNL based detector has near optimal performance in 
weak signal case. The results also show that for small value 
of , for example 1.2  (the interference is close to 
Cauchy case), the Cauchy based detector performs much at 
one as AZMNL based detector, however, as the value of  
increases, its performance degrades significantly, especially 
near Gaussian case (i.e. 1.8 ). On the contrary, the 
GZMNL based detector renders near optimal performance 
for larger , but becomes inferior in case of smaller . This 
is due to the fact that Cauchy ZMNL is close to the optimal 
ZMNL near Cauchy distribution, and GZMNL is close to 
optimal ZMNL for larger  which indicates the input is near 
Gaussian r.v.. Compared with Cauchy and GZMNL, the 
proposed AZMNL can achieve good performance and is 

robust for operation in environments of stable interference 
of varying characteristic exponent . Consequently, 
suggested detector is more efficient in impulsive 
circumstance. 
 

6. CONCLUSION 
 
In this paper, we have proposed a new AZMNL based 
detector. By means of BCGM, which is a concise 
approximation expression of PDF of S S interference, the 
relation between test threshold and FAR is developed. 
Hence, an adaptive detector can be achieved by adjusting its 
testing threshold according with preset FAR and noise 
parameters. Various simulations have been provided to 
inspect the performances of new detector and the results 
illustrate the AZMNL based detector has near optimal 
performance and superiority to other detectors for weak 
signal detection. Although proposed method is available in 
the range 1< <2, it is not a serious limit since noise with  
value below 1 is too impulsive and hence is infrequently 
occurring in real world. 
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