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ABSTRACT

The algebraic theory of finite groups appears in signal pro-

cessing problems involving the statistical analysis of ranked

data and the construction of invariants for pattern recogni-

tion. Standard signal processing techniques involving spec-

tral analysis are, in theory, possible for data defined on finite

groups by using the Fourier transform provided by group rep-

resentations. However, one such technique, the bispectrum,

which is useful for analysing non-Gaussian data as well as

for constructing geometric invariants, has not been explored

in detail for finite groups. This paper shows how to construct

the bispectrum on an arbitrary finite group or homogeneous

space and explores its properties. Examples are given using

the symmetric group as well as wreath-product groups.

Index Terms— SYMMETRIC GROUP, BISPECTRUM,

WREATH-PRODUCT

1. INTRODUCTION

The algebraic theory of finite groups is useful for handling

signal processing problems involving the statistical analysis

of ranked data [1] and the recognition of transformed copies

of a template in images [2]. On each finite group, the Peter-

Weyl theorem shows how the Fourier transform may be con-

structed from the group’s irreducible unitary representations

[3], making it possible, at least in theory, to apply signal pro-

cessing techniques involving spectral analysis of data. How-

ever, one such technique, the bispectrum, has not been ex-

plored in detail for finite groups. The bispectrum is phase-

sensitive but Gaussian-noise insensitive, making it useful for

devising geometric invariants for pattern recognition as well

as for analyzing non-Gaussian signals in Gaussian noise [4].

This paper shows how to construct the bispectrum on an ar-

bitrary finite group or homogeneous space, describes some of

its key properties, and provide examples using the symmetric

group of permutations as well as wreath-product groups.

The theory of the bispectrum has been studied for func-

tions defined on the real line (and Rn) [5]. It has been ex-

tended from the Euclidean domains to handle functions whose

domain is a sphere [6], which occur in analyzing geophysical

data as well as in cardiac imaging. The sphere is a space on

which the non-commutative group of three-dimensional rota-

tions SO(3) acts transitively, i.e., it is possible to map any

point on the sphere to any other through an appropriate rota-

tion. This result suggests that the concept of the bispectrum

should carry over to finite groups as well as to their homo-

geneous spaces (sets on which they act transitively), as dis-

cussed further below. Ref. [7] proposes the “skew-spectrum”

for graphs and compares it to the abstract bispectral theory

contained in [8]. This paper elaborates on the bispectrum for

finite groups and homogeneous spaces with relevant exam-

ples.

2. BACKGROUND

The bispectrum is defined for functions on the real-line as the

Fourier transform of the function’s triple correlation, which is

obtained from integrating the function against two indepen-

dently shifted copies of itself as follows:

Tf (x, y) =
∫ ∞

−∞
f∗(t)f(t + x)f(t + y)dt.

If F is the Fourier transform of the function f , then it can

be shown [5] that the bispectrum is the two-variable product

spectrum:

Bf (u, v) = F {Tf} = F (u)F (v)F (u + v)∗. (1)

This equation shows that the bispectrum carries phase in-

formation, but yet remains invariant under translation of the

function; translation by x has the effect F (u) �→ F (u)ej2πux,

and

ej2πuxej2πvxe−j2π(u+v)x = 1 (2)

Furthermore, it is known that for a large class of functions,

including those that are bandlimited, the bispectrum is unique

to the function up to a single unknown translation [5]. This

makes the bispectrum useful for, among other applications,

averaging translating copies of a function in Gaussian noise

without averaging out the function. The function may be re-

covered from its bispectrum using a recursion of the form
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(shown here for simplicity for sampled spectra):

F̂ (n) =
Bf (n − 1, 1)∗

F̂ (n − 1)F̂ (1)

The bispectrum is useful for statistical signal processing pri-

marily because it is derived from the third order cumulant

E [XtXt+uXt+v], which vanishes identically for any zero

mean Gaussian process [4].

2.1. Group representations

This section states some necessary facts from the literature

on group representation theory (see ([3][9][10] for details).

A unitary representation of a finite group G is a homomor-

phism Dω : G → U(nω) where U(nω) is the group of

nω × nω unitary matrices. Two representations Dω1 , Dω2

are equivalent if there exists a unitary matrix U such that

Dω1(g) = UDω2(g)U†, where † is conjugate transpose. A

representation is irreducible if it not equivalent to a direct

sum of smaller dimensional representations. Let {Dω}ω∈Ω

represent a complete set of unitary irreducible representa-

tions of G, one from each equivalence class. Their dimen-

sions are constrained by
∑

ω∈Ω n2
ω = |G|, where |G| is the

number of elements in G. The character χω of a represen-

tation Dω is defined as the trace χω(g) = tr [Dω(g)]. If

< f1, f2 >= 1/|G|∑g∈G f1(g)f2(g)∗ denotes the inner

product on G, then < χω1 , χω2 >= 0 for ω1, ω2 ∈ Ω, unless

ω1 = ω2, in which case < χω1 , χω1 >= 1.

The (matrix-valued) Fourier transform on G is defined by

coefficients

F (ω) =
1
|G|

∑
g∈G

f(g)Dω(g)†.

A (left) translation of f by h ∈ G is f(g) �→ f(hg), and

f1(g) = f2(hg) if and only if F1(ω) = F2(ω)Dω(h). The

inverse Fourier transform is

f(g) =
∑
ω∈Ω

nωtr [F (ω)Dω(g)]

Note that we may choose D0(g) = 1 to be the first irreducible

representation for every finite group. Hence, F (0) is the mean

(DC) value of the function, just as it is in the ordinary Fourier

transform on the real line.

3. FINITE GROUPS

In this section, the theory of the bispectrum on finite groups

is developed. The left-invariant autocorrelation of f is

Af (g′) =
1
|G|

∑
g∈G

f∗(g)f(gg′). (3)

As the name suggests, if f1(g) = f2(hg), then Af1 = Af2 .

Similarly, the triple correlation of f is

Tf (g1, g2) =
1
|G|

∑
g∈G

f∗(g)f(gg1)f(gg2). (4)

Note that Tf is a function defined on G×G, and that, like the

autocorrelation, the triple correlation is invariant under left

translation: Tf1 = Tf2 if f1(g) = f2(hg). Moreover, T is the

sample third order cumulant, whose expected value is zero for

zero-mean Gaussian noise.

The Fourier transformation of Tf requires Kronecker (ten-

sor) products of the representation matrices {Dω}ω∈Ω. The

bispectrum is obtained by the formula:

Bf (σ, δ) =
1
|G|

∑
g1∈G

∑
g2∈G

Tf (g1, g2)Dσ(g1)† ⊗ Dδ(g2)†.

for all σ, δ ∈ Ω. Inserting eq (4) above, and simplifying, and

noting that the interior two summations (over g1, g2) yield

∑
g1∈G

∑
g2∈G f(gg1)f(gg2)

[
Dσ(g1)† ⊗ Dδ(g2)†

]
= [F (σ) ⊗ F (δ)] [Dσ(g) ⊗ Dδ(g)] ,

we obtain that Bf (σ, δ) is

F (σ) ⊗ F (δ)

⎡
⎣ 1
|G|

∑
g∈G

f(g)∗Dσ(g) ⊗ Dδ(g)

⎤
⎦ . (5)

The Kronecker product Dσ(g) ⊗ Dδ(g) is, in general, re-

ducible, and hence we may write for suitable indices ω1, ω2,

. . ., ωk, all in Ω, that

Dσ(g) ⊗ Dδ(g) = Cσδ [Dω1(g) ⊕ · · · ⊕ Dωk
(g)] C†σδ. (6)

Here, ⊕ is the direct sum of matrices, the unitary matrix Cσδ

is the Clebsh-Gordan matrix for σ, δ, and the indices ω1, . . .,
ωk depend on the selection of σ, δ. From matching the di-

mensions on both sides of (6), we see that nσnω = nω1 +
· · · + nωk

. Using (6) in (5) yields the bispectrum formula for

arbitrary finite groups:

Bf (σ, δ) = F (σ)⊗F (δ)Cσδ

[
F (ω1)† ⊕ · · · ⊕ F (ωk)†

]
C†σδ.

(7)

The formula simplifies to (1) if G is Abelian, in which case

the fundamental theorem of finite Abelian groups shows that

G is a direct product of cyclic groups, each of which is repre-

sented by the complex exponentials x �→ ejωx.

We now develop some of the properties of the bispectrum

(7) for finite groups. By taking the trace on both sides of (6),

we see that

χσ(g)χδ(g) = χω1(g) + χω2(g) + · · · + χωk
(g).

Since characters are orthonormal, we can obtain the indices

ω1, . . ., ωk (which are not necessarily distinct) and their mul-

tiplicities by computing inner products < χσχδ, χω >, for
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all ω ∈ Ω. Moreover, if either σ or δ is one-dimensional,

then it follows that Dσ ⊗ Dδ is irreducible (because <
χσχδ, χσχδ >= 1, see Section 2.1). In particular, if we

take σ = 0, then the decomposition (6) is trivial and we have

Bf (0, δ) = F (0)F (δ)F (δ)†.

It can be seen that, aside from multiplication by the scalar

F (0), this is the Fourier transform of the autocorrelation Af

in (3). A matrix of the form FF † is positive semidefinite, and

by using the well-known fact that every matrix has a polar

decomposition, we see that Bf1 = Bf2 for two functions f1

and f2 if and only if F1(ω) = F2(ω)U(ω) for some unitary

matrix U(ω) (assuming that f1, f2 have a non-zero DC value).

Suppose now that all of the Fourier matrices F1(ω) of a

particular function f1 are non-singular. In that case, we obtain

by straightforward manipulation that Bf1 = Bf2 if and only if

F1(ω) = F2(ω)U(ω) for unitary matrices U(ω) and all ω ∈
Ω, and moreover for all σ, δ ∈ Ω that these unitary matrices

satisfy the decomposition

U(σ) ⊗ U(δ) = Cσδ [U(ω1) ⊕ · · · ⊕ U(ωk)] C†σδ. (8)

It is clear that from eq (6) that if U(ω) = Dω(h) for some

h ∈ G, i.e., that f1 is a left translation of f2, then eq (8) is sat-

isfied. It is shown furthermore in [8] that (8) is satisfied only

if U(ω) = Dω(h), ensuring that the bispectrum is unique for

a function with non-singular Fourier coefficients up to a left

translation on G.

4. HOMOGENEOUS SPACES

The bispectrum theory extends beyond groups to their homo-

geneous spaces, which are defined as sets on which the group

acts transitively. For example, the set Xn = {1, 2, . . . , n} is

a homogeneous space for the group of all permutations of n
digits, Sn. If we let Sn,n denote the subgroup of Sn whose

elements fix the last entry n in Xn, then we obtain a bijection

between Xn and the coset space Sn/Sn,n = {Sn,ng : g ∈
Sn}. In fact, every homogenous space X of a finite group G
can be represented as the coset space G/H of a subgroup H
whose elements fix a particular element of X .

To any function f̃ defined on a coset space G/H there cor-

responds a unique function f on G that is constant on cosets

Hg, and furthermore f(g) = f̃(π(g)), where π : G → G/H
is the canonical coset map. Note that f is invariant under left

translation by elements of H , i.e., f(g) = f(hg) for h ∈ H .

If {F (ω)}ω∈Ω are the Fourier transform coefficents of f , then

by the translation property of the coefficients we must have

that F (ω) = F (ω)Dω(h) for all h ∈ H . By integration over

H , we obtain that F (ω) = F (ω)PH(ω), where

PH(ω) =
1
|H|

∑
h∈H

Dω(h).

Note that PH is a projection matrix: PHPH = PH . By inte-

grating both sides of (6) we see that Kronecker produts of pro-

jection operators decompose according to the Clebsh-Gordon

formula ([11], pg 190):

PH(σ) ⊗ PH(δ) =

Cσδ [PH(ω1) ⊕ · · · ⊕ PH(ωk)] C†σδ [PH(σ) ⊗ PH(δ)] .

This ensures that the bispectrum formula (7) is valid for func-

tions whose domain is a homogeneous space as well as those

defined on groups.

5. EXAMPLES

The theory of bispectrum on finite groups is illustrated with

two specific examples, the symmetric group S4 and the

wreath-product group Z3,4.

5.1. Symmetric group example

Due to Cayley’s theorem, the bispectral theory for symmet-

ric groups serves as a template for every finite group. Certain

facts about representations of Sn are used below; see [9] for

more details. Every symmetric group has P (n) irreducible

representations, where P (n) is the number of arithmetic par-

titions of n. The trivial representation D0(g) = 1 and the sign

representation D1(g) = (−1)τ(g), where τ(g) is the number

of pairwise transpositions needed to produce g, are two irre-

ducible representations of Sn that are one-dimensional.

As a specific example, the bispectrum for the symmetric

group S4 is described in detail. Note that P (4) = 5, since

there are 5 ways that positive numbers add up to 4; hence,

there are 5 irreducible representations, the first 2 of which are

D0 and D1 as described above. The next 3 representations,

denoted D2, D3 and D4, have dimensions 2, 3, and 3, respec-

tively. Note that the squares of the dimensions add up to |G|,
i.e., 24 = 12 + 12 + 22 + 32 + 32.

The bispectral coefficients in eq. (7) depend on the de-

composition of Kronecker products Dσ ⊗Dδ into irreducible

representations. Since there are 5 representions, the decom-

position may be written in a vector such as, for example,

01100; this particular vector indicates that only representa-

tions D1 and D2 are present. Using the character table for S4

in [10], Table 1 shows the decompositions for various tensor

products. It shows, in particular, that Bf (3, 4) is the matrix

F (3) ⊗ F (4)C34

[
F (4)† ⊕ F (3)† ⊕ F (2)† ⊕ F (1)†

]
C†34.

Methods for calculating the coefficients of the 9 × 9 Clebsh-

Gordan matrix C34 are discussed in [10] (pp 254-273).

5.1.1. Permutations of 4

As discussed in Section 4, the space X4 = {1, 2, 3, 4} is ho-

mogeneous for symmetric group S4, and is in bijection with
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Table 1. Decomposition of Tensor Products on S4
0 1 2 3 4

0 10000 01000 00100 00010 00001
1 01000 10000 00100 00001 00010
2 00100 00100 11100 00011 00011
3 00010 00001 00011 10111 01111
4 00001 00010 00011 01111 10111

the coset space S4/S4,4, where S4,4 is the subgroup of S4

of permutations that fix the number 4. The 5 representations

of S4 span a 24-dimensional space, but when projected onto

the cosets of S4,4 span only a 4- dimensional space. Note

that S4,4 is isomorphic to S3, the group consisting of all 6
permutations of 3 elements. Hence, the projected represen-

tations DωPS44(ω), for 0 ≤ ω < 5, have only 4 non-zero

elements. We see in particular that D1PS44 , the sign repre-

sentation, must project to zero. Software for calculating the

coefficients is available online 1.

5.2. Wreath-product group Z3,4

The wreath-product group Z3,4, discussed in [2], is a non-

abelian group of automorphisms on the two-level tree with 3
branches at level 1 and 4 leaves per branch at level 2 (hence a

total of 12 leaves). The elements of Z3,4 may be described as

vectors [(j0, j1, j2); i], where 0 ≤ jk < 4 are cyclic shifts

of the 4 leaves in each of the 3 branches of the tree, and

0 ≤ i < 3 is a cyclic shift of the 3 branches among them-

selves.

As discussed in [2], the irreducible representations of Z3,4

acting on the two-level tree are either 1-dimensional (there

are 3 of these) or 3-dimensional (there are 3 of these). The

Fourier transform is equivalent to a computation of the Radon

transform from the leaves to the branch nodes, followed by

the ordinary DFT on the branch nodes, as well as the DFT of

the leaves in each branch (omitting the DC component). For

example, let the leaves of the tree be represented by the vec-

tor f = [1, 2, . . . , 12]. The branch node values are obtained

from summing together 4 leaves each, and therefore produce

the Radon transform values s = [10, 26, 42]. The 12-point

spectrum F is obtained by combining the 3-point DFT of s,

followed by the 3 non-DC DFT values of each of the 3 sets of

4 leaves, e.g., for the set [1, 2, 3, 4], the non-DC DFT values

are [−2+2j, 2,−2−2j], and similarly for the other two sets.

Reconstruction of f from F is obvious.

The bispectrum of f is obtained from computing the bis-

pectrum of each of the 4 blocks of 3 similar coefficients in

F , using (1). For example, the 3 elements F (3), F (4), F (5)
constitute the non-DC coefficients of the set [1, 2, 3, 4] as de-

scribed above. Shifting each index by 2 to account for their

1See ”Symmetrica”, available at http://www.algorithm.uni-

bayreuth.de/en/research/SYMMETRICA/

placement in X , the bispectral terms according to (1) include

F (3)F (3)F (4)∗ and F (3)F (4)F (5)∗, as well as their com-

plex conjugates.

6. CONCLUSIONS

This paper demonstrates the construction of the bispectrum

for finite groups, and shows how it may be applied with il-

lustrative examples of two different noncommutative groups.

The results may be used in future research to develop phase-

sensitive, and Gaussian noise insensitive, statistics for signal

processing and pattern recognition.
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