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ABSTRACT
In this paper, we propose Bayesian filtering technique for

continuous-time dynamical models with sampled-data mea-

surements using the linear fractional transformation (LFT)

model which transforms the nonlinear state space model into

an exact equivalent linear model with a simple nonlinear feed-

back loop. The linear model is amenable to Euler discretiza-

tion. Simulation results demonstrate that the proposed filter-

ing technique gives better approximation and tracking per-

formance than the unscented Kalman filter (UKF) which di-

verges for highly nonlinear problems.

Index Terms— nonlinear filtering, Bayesian estimation,

continuous-time systems, sampled-data measurements, linear

fractional transformation model

1. INTRODUCTION

The continuous-time state dynamics model with sampled-

data measurements gives an accurate model for real systems

that are continuous processes and for sensor data available

at discrete sampling intervals only. Under linear assump-

tion on the state space model and certain particular cases

the conditional expectation of the state given a sequence of

sampled-data measurements admits a closed form solution

[1, 2]. In general, there exists no tractable method to compute

the conditional mean and an approximation is inevitable.

In the literature there are two standard approximation ap-

proaches for nonlinear filtering. The extended Kalman filter

(EKF) applies a local linearization to the nonlinear mapping

around the state estimate [3, 4]. Using this method the nonlin-

ear model is replaced by a linearized model based on the first-

order Taylor series expansion. The unscented Kalman filter

(UKF) [5] on the other hand, aiming at the direct approx-

imation of the exact statistical model applies the unscented

transformation [5] to compute the covariances involved and

does not give a linearized model of the nonlinear mapping.

It has been shown that in most applications UKF gives bet-

ter approximation that EKF [6]. Despite the advantage of
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UKF over EKF, the two approaches work reasonably well

under mildly nonlinear conditions only. The focus of some

research has been in the direction of sequential Monte Carlo

(SMC) methods for nonlinear Bayesian filtering applications

[7], grid based methods [8] and other numerical solution to

Kolmogorov forward equation [9].

In nonlinear control, the linear fractional transformation

(LFT) method (see e.g., [10, 11] and the references therein) is

extensively employed in gain-scheduling control to describe

nonlinear plants by an equivalent linear model with nonlinear

feedback. The LFT approach gives an equivalent representa-

tion for any smooth nonlinear mapping [10, 12, 13]. More-

over, for highly nonlinear systems involving complex frac-

tional terms the LFT model gives an exact equivalent repre-

sentation. In this paper, we propose nonlinear Bayesian fil-

tering using the LFT model for continuous-time dynamical

models with sampled-data measurements. By applying the

unscented transformation to the feedback loop only we derive

a closed form solution to estimate the conditional mean of the

state. Our simulation results show that the proposed filter-

ing approach gives a better tracking performance than UKF

which gives inconsistent estimates for highly nonlinear prob-

lems.

The paper is structured as follows: Section II reviews the

unscented transformation method and the LFT model. We

then state the main result of this paper, a closed form solu-

tion to Bayes recursion using the LFT model and give sim-

ulation results in Section IV to compare the performance of

the proposed filter with UKF. We conclude with some final

comments in Section V.

2. BACKGROUND

Consider the dynamical equation given by Itô differential

equation as

dx(t) = f(x(t))dt + B̃(t)dβ(t), (1)

where f(·) denotes a nonlinear mapping and β(t) denotes an

independent Brownian motion process. The state x(t) ∈ Rn

is a Markov process independent of β(t). B̃(t) ∈ Rn×p de-
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notes the noise gain matrix. The dynamical model is alter-

natively given in terms of the white noise process w̃(t) with

covariance Q̃(t) as

dx(t)
dt

= f(x(t)) + B̃(t)w̃(t). (2)

For measurements available at discrete sampling intervals, the

measurement model is given by

zk = g(x(tk)) + Dkvk, (3)

where g(·) denote a nonlinear mapping, zk ∈ R
m denotes the

observation at time step k and the sampling instant tk = kT
with T as the sampling interval. The measurement noise vk

with zero mean and covariance Rk is statistically independent

of the state x(tk) and Dk ∈ R
m×q denote the noise gain ma-

trix.

The filtering problem involves estimating the state x(tk)
at time tk given a sequence of observations Zk = {z1, . . . , zk}.

The estimate given by recursive Bayesian estimation is ob-

tained in a two step process. The predicted state m(tk|tk−1)
at time tk−1 is given by the Kolmogorov forward partial dif-

ferential equation. On arrival of measurement zk at time tk,

the optimal filtering estimate is given by applying Bayes rule.

Under linear assumption on the mappings f(·) and g(·),
(2)-(3) are given by

ẋ(t) = Ã(t)x(t) + B̃(t)w̃(t), (4)

zk = Ckx(tk) + Dkvk. (5)

This case has been treated in detail in [3, 4, 1]. In the general

case there exists no tractable method to compute the condi-

tional expectation E{x(tk)|Zk}. Only under certain regular-

ity conditions the solution can be obtained in an analytical

manner [1, 2]. Nonlinear filtering therefore involves an ap-

proximation to evaluate the estimate. In the literature there are

two standard approximation approaches. EKF uses the first-

order Taylor series approximation of f(·) and g(·) around

some estimate [3, 4]. On the other hand, UKF applies the

unscented transformation [5] based on the statistical linear re-

gression technique to evaluate the conditional mean. The ex-

pected value given by UKF has a higher order accuracy com-

pared to the expected value given by EKF. However, these ap-

proximation techniques are more suited to the class of mildly

nonlinear problems only to give estimates with reasonably

good accuracy.

A transformation applied extensively in gain scheduling

control to describe nonlinear plants is the LFT model [10, 11].

It is well known that any smooth nonlinear mapping admits

an LFT representation [10, 12, 13]. This property makes the

LFT model amenable to the most general class of nonlinear

problems. The intrinsic linear structure ensures efficiency and

ease of implementation which has been demonstrated in [13]

by applying it to a highly nonlinear control problem. Unlike

UKF which does not give a linear model for f(x), the LFT

model admits Euler discretization. Localizing the unscented

transformation to the feedback path only, the approximation

is more accurate than applying UKF to the continuous-time

dynamical model. This motivates recursive Bayesian filtering

using the LFT model for a general class of nonlinear problems

with continuous-time dynamical equation and sampled-data

measurements.

2.1. The Unscented Transformation Method

Suppose x ∈ Rn denotes a random variable where x =
[x(1), x(2), . . . , x(n) ]T with mean x̄ = [ x̄(1), x̄(2), . . . , x̄(n) ]T

and covariance Rx. Suppose a second random variable

y depends on x through the mapping y = f(x), where

f(x) = [ f1(x), f2(x), . . . , fm(x) ]T is smooth and nonlin-

ear. The random variable y can be expressed in the exact

statistical form

f(x) = RyxR−1
x (x − x̄) + f(x̄) + e, (6)

where RyxR−1
x (x − x̄) + f(x̄) is an affine function of x

and Ryx is the cross-covariance of y and x. The error e =
y−RyxR−1

x (x− x̄)−f(x̄) is a random quantity and is uncor-

related to x. The procedure for the unscented transformation

applied by UKF to approximate the covariance and means is

as follows. Regression points xi, i = 1, . . . , p are selected

around x̄ in a manner such that the sample mean and covari-

ance of the points are identical to the mean and covariance of

x. Then the mean and covariance of the random variable y
and the cross-covariance of y and x are approximated by the

distribution of the regression points xi and yi, i = 1, 2, . . . , p
as,

ȳ =
1
p

p∑
i=1

yi, Ry =
1
p

p∑
i=1

(yi − ȳ)(yi − ȳ)T , (7)

Ryx =
1
p

p∑
i=1

(yi − ȳ)(xi − x̄)T . (8)

Details of the unscented transformation are given in [5].

2.2. The Linear Fractional Transformation (LFT) Model

From robust control theory it is known that any smooth non-

linear mapping f(x) admits an equivalent representation

known as the LFT model [10, 12, 13],

[
y

yΔ

]
=

[
A B
C D

] [
x

wΔ

]
, (9)

wΔ = Δ(x)yΔ, (10)

where A ∈ Rm×n, B ∈ Rm×nΔ , C ∈ RnΔ×n and

D ∈ RnΔ×nΔ . The auxiliary variables wΔ ∈ RnΔ and

yΔ ∈ RnΔ introduced are related via the feedback con-

nection Δ(x) which admits a simple structure of the form

Δ(x) =
∑n

i=1 Δix(i).
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The LFT model (9)-(10) is nonlinear in the feedback path

only. Using this representation the approximation is localized

to the feedback loop only for the estimation of the auxiliary

random variable wΔ in (10). Given the moments of x, the

moments of wΔ can be computed from the distribution of the

regression points wΔi = Δ(xi)yΔi by applying the unscented

transformation as shown in (7) where yΔi is approximated as

yΔi ≈ Cxi + Dw̄Δ with w̄Δ = E{wΔ}.

Suppose y = f(x) + B1w denotes a random variable

which depends on x with mean x̄ and covariance Rx and

w ∼ N (·; 0, Rw), independent of x. The equivalent represen-

tation for the mapping using the LFT model takes the form

y = Ax + B1w + B2wΔ, (11)

yΔ = Cx + DwΔ, (12)

wΔ = Δ(x)yΔ. (13)

where B1 ∈ Rm×nw and B2 ∈ Rm×nΔ . Taking ex-

pectation in (11) and substituting the expected value of

wΔ, the expectation of y is ȳ = Ax̄ + B2w̄Δ. Under

the assumption that wΔ and w are uncorrelated, the co-

variance of y and the cross-covariance with x are Ry =
ARxAT +B1RwBT

1 +B2RΔBT
2 +ART

ΔxBT
2 +B2RΔxAT

and Ryx = ARx + B2RΔx respectively where RΔw denotes

the cross-covariance of wΔ and w.

3. BAYES RECURSION USING LFT MODEL

For smooth nonlinear mappings f(·) and g(·), the LFT model

gives an exact representation for (2)-(3),

ẋ(t) = Ax(t) + B̃1w̃(t) + B̃2w̃Δ(t), (14)

zk = C1x(tk) + D11vk + D12wΔk, (15)

zΔ(t) = C2x(t) + D22wΔ(t), (16)

wΔ(t) = Δ(x(t))zΔ(t), (17)

where A ∈ Rn×n, B̃1 ∈ Rn×nw , B̃2 ∈ Rn×nΔ , C1 ∈
Rm×n, D11 ∈ Rm×nv , D12 ∈ Rm×nΔ , C2 ∈ RnΔ×n, and

D22 ∈ RnΔ×nΔ . wΔ(t) ∈ RnΔ and zΔ(t) ∈ RnΔ denote

auxiliary variables. The feedback connection admits a simple

structure as indicated above.

Under the assumption that the noise sequences {w(t)}
and {v(tk)} are mutually uncorrelated and independent of the

state x(t) and the auxiliary variable wΔ(t) the following re-

sult holds.

Proposition 1 Suppose the estimate of the state x(tk−1) at
time tk−1 given the data sequence Zk−1 is mk−1 with co-
variance of the error Pk−1. Then, the predicted state at time
tk conditional on the data up to time tk−1 is mk|k−1 with

covariance of the error in prediction Pk|k−1 where

mk|k−1 = eAT mk−1 +
∫ T

0

(
eAζdζ

)
B2w̄Δ(tk−1), (18)

Pk|k−1 = eATPk−1e
ATT+ Qk+ RΔk−1+ eAT

∫ T

0

R̃T
Δx(tk−1)·

BT
2 eAT τdτ +

∫ T

0

eAτB2R̃Δx(tk−1)eAT T dτ, (19)

with

RΔk−1 =
∫ T

0

eA(tk)τ R̃Δ(tk)eAT (tk)τdτ. (20)

Proposition 2 Suppose the predicted state x(tk|tk−1) condi-
tional on the data sequence Zk−1 at time tk−1 has the mean
mk|k−1 and is distributed with covariance Pk|k−1. Then, the
conditional expectation of x(tk)|Zk−1 also conditional on the
data zk at time tk is estimated as

mk = mk|k−1 + Kk(zk − ηk), (21)

and the covariance of the error in the estimate is

Pk = Pk|k−1 − Kk(C1Pk|k−1 + D12RΔx,k|k−1), (22)

with

ηk = C1mk|k−1 +
∫ T

0

(
eAζdζ

)
D12w̄Δ(tk|tk−1), (23)

Kk =
(
Pk|k−1C

T
1 + RT

Δx,k|k−1D
T
12

)(
C1Pk|k−1C

T
1 +

D11RkDT
11 + D12RΔk|k−1D

T
12+

C1R
T
Δx,k|k−1D

T
12 + D12RΔx,k|k−1C

T
1

)−1
, (24)

where

RΔk|k−1 =
∫ T

0

eAτ R̃Δ(tk|tk−1)eAT τdτ. (25)

4. SIMULATION RESULTS

In this section we present simulation results for the non-

linear benchmark model [13]. We consider tracking the

kinematic state of the unstable nonlinear system x(t) =
[x1(t), x2(t), x3(t), x4(t)]T =[ξ(t), ξ̇(t), θ(t), θ̇(t)]T where

(ξ(t), ξ̇(t)) denote the translational position and velocity of

the oscillator and (θ(t), θ̇(t)) denote the rotational position

and velocity of the actuator respectively. The nonlinear state-

space model is given by

ẋ(t) =

⎡
⎢⎢⎢⎣

x2(t)
−x1(t)+εx2

4(t) sin x3(t)
1−ε2 cos2 x3(t)

x4(t)
ε cos x3(t)(x1(t)−εx2

4(t) sin x3(t))
1−ε2 cos2 x3(t)

⎤
⎥⎥⎥⎦ + B̃1w̃(t), (26)
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where w̃(t) ∼ N (0, Q̃(t)) with Q̃(t) = diag([ 0.04, 0.001 ]).
The sampled-data measurements comprise of (ξ(t), θ(t))
available at sampling interval T = 10 ms and corrupted by

noise vk = N (0, Rk) with Rk = diag([ σξ, σθ ]), σξ =
0.1 m and σθ = π/180 rad. The LFT model for (26) is given

in [13]. Given the initial condition x(0) = [ 0.5, 0, 0, 0 ]T

and P (0) = diag([ 3, 3, π/60, π/60 ]) and for ε = 0.2 the

true trajectories of the oscillator and actuator for 10 s are

shown in Fig. (1). In Fig. (2) the mean square error (MSE)

in the estimates of the oscillator and actuator are shown

using the proposed filtering approach and UKF. The simula-

tion results indicate that the proposed approach gives better

performance than UKF.
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Fig. 1. Oscillator and actuator trajectories.
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Fig. 2. MSE in oscillator/ actuator positions using LFT model

and UKF.

5. CONCLUSIONS

In this paper, nonlinear Bayesian filtering using the LFT

model is proposed for continuous-time problems with sampled-

data measurements. By applying the unscented transforma-

tion to the feedback path of the LFT model only we derive a

closed form solution to estimate the conditional mean of the

state given a set of observations. Simulation results demon-

strate that the proposed approximation works better than

UKF.
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