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ABSTRACT
In this paper, we study the problem of non-orthogonal joint diagona-
lisation of a set of real symmetric matrices via simultaneous con-
jugation. A family of block Jacobi-type methods are proposed to
optimise two popular cost functions for the non-orthogonal joint di-
agonalisation, namely, the off-norm function and the log-likelihood
function. By exploiting the appropriate underlying manifold, namely
the so-called oblique manifold, rigorous analysis shows that, under
the exact non-orthogonal joint diagonalisation setting, the proposed
methods converge locally quadratically fast to a joint diagonaliser.
Finally, performance of our methods is investigated by numerical
experiments for both exact and approximate non-orthogonal joint di-
agonalisation.

Index Terms— Independent component analysis (ICA), non-
orthogonal joint diagonalisation (NoJD), oblique manifold, block
Jacobi-type method, local quadratic convergence.

1. INTRODUCTION

In recent years, joint diagonalisation of a set of matrices has attracted
considerable attention in the areas of statistical signal processing and
multivariate statistics. It has become a prominent tool for the prob-
lem of linear independent component analysis (ICA). In general,
after a whitening process of the source signals, usually via princi-
pal component analysis (PCA), a linear ICA problem is expected
to be solved by a joint diagonalisation of a set of matrices, which
are derived from certain statistics of the whitened sources, with an
orthogonality constraint on the diagonalising matrix [5]. Unfortu-
nately, it has been shown in [4] that linear ICA performed by an
orthogonal joint diagonalisation (OJD) might have a serious limit
of degraded performance, especially when additive noise is present.
Furthermore, some diagonality criterion, namely the weighted least
square (WLS) based criterion, might result in poor performance of
joint diagonalisation, since this criterion is practically distorted by
the whitening process [12].

To avoid the aforementioned limits of OJD, a natural relaxation
of OJD, namely the non-orthogonal joint diagonalisation (NoJD),
has been recently proposed and studied with increasing attention.
Generally speaking, a criterion or measure of diagonality of a set of
matrices can be constructed mainly in three different forms, specif-
ically, off-norm formulation [7], log-likelihood formulation [8], and
subspace fitting formulation [10]. Note that log-likelihood based cri-
teria only apply to a set of positive definite matrices. Nowadays,
various numerical algorithms for optimising these diagonality crite-
ria have been developed in the community. To list a few, they include
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Hüper was with Max Planck Institute for Biological Cybernetics, Germany.

Newton-type methods [7], Gauss-Newton methods [10], Jacobi-type
methods [8, 11], and so on. In this work, we focus on developing
Jacobi-type NoJD methods.

Different to the more algebraic approaches taken in [8, 11], we
treat Jacobi-type method as an optimisation approach on a smooth
manifold. It is known that, by the construction of the so-called Ex-
act NoJD and certain diagonality criteria, the oblique manifold is an
appropriate setting for these scenarios [1, 3]. Recent work in [6] pro-
poses a block Jacobi-type method on a smooth manifold, which has
been applied successfully to the problem of independent subspace
analysis (ISA) in [9]. The task of this paper is to develop block
Jacobi-type NoJD methods from a geometric optimisation perspec-
tive, which optimise two particular NoJD cost functions, specifically
the off-norm function and the log-likelihood function.

The paper is organised as follows. Section 2 provides a brief
introduction to the NoJD problem and some basic concepts of the
oblique manifold required in our derivation. In Section 3, we ana-
lyse the critical point set of two NoJD cost functions under the Exact
NoJD setting. By exploiting the block diagonal structure of the Hes-
sians at the joint diagonaliser, a family of block Jacobi-type NoJD
methods is proposed. Meanwhile, local convergence properties of
these methods are presented as well. Finally, in Section 4, perfor-
mance of the proposed algorithms is investigated by numerical ex-
periments for both the Exact NoJD and Approximate NoJD settings.

2. MATHEMATICAL PRELIMINARIES

Given a set ofm×m real symmetric matrices {Ci}
n
i=1, constructed

by
Ci = AΛiA

�
, i = 1, . . . , n, (1)

where Λi = diag
`
λi1, . . . , λim

´
∈ R

m×m with λij �= 0 for j =

1, . . . , m and A ∈ R
m×m non-singular. The problem of estimating

the matrix A given only the set {Ci}
n
i=1 is equivalent to finding

a non-singular matrix X ∈ R
m×m such that the set of matrices

{Yi}
n
i=1, computed by

Yi = X
�

CiX, i = 1, . . . , n, (2)
are simultaneously diagonalised. We refer to this problem as the
Exact NoJD problem. In a generic situation, a joint diagonaliser X
can only be determined up to column-wise permutation and scaling,
i.e., if X is a diagonaliser, so is any XDP where D is an m×m
invertible diagonal matrix and P anm×m permutation matrix. For
any j = 1, . . . , m, let us denote λj = (λij)

n
i=1 ∈ R

n. Accord-
ing to theorem 2.3 in [3], the Exact NoJD problem (2) has a unique
joint diagonaliser, which refers to that column-wise permutation and
scaling are the only indeterminacies in identifying the diagonaliser,
if and only if any pair (λj , λk) for j �= k are linearly independent.

To deal with the scaling ambiguity, the oblique manifold is
shown to be an appropriate setting for Exact NoJD [3]. Note that
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in [1], OB(m) is differently defined. We, however, think that for
our application, the rank condition is indispensable. Let denote the
m×m oblique manifold by

OB(m) :=
˘
X∈R

m×m|ddiag(X�
X) = Im, rkX = m

¯
, (3)

where ddiag(Z) forms a diagonal matrix, whose diagonal entries
are just those of Z, and Im is the m×m identity matrix. Thus, we
define the off-norm function [7], a NoJD cost function, as follows

f1 : OB(m) → R, X �→
1

4

nX
i=1

‚‚‚ off(X�
CiX)

‚‚‚2

F
, (4)

where off(Z) = Z − ddiag(Z) is a matrix by setting the diagonal
entries of Z to zero, and ‖ · ‖F is the Frobenius norm.

In the specific application of linear ICA, however, due to the
presence of additive noise or estimation errors, exact joint diago-
nalisation is hardly possible to achieve. Thus in general, the task
is eventually to find a matrix X ∈ R

m×m such that the matrices
{Yi}

n
i=1 under the construction (2) are jointly as diagonal as possi-

ble. We refer to this problem as the Approximate NoJD problem. It
is important to notice that the off-norm function (4) is not column-
wise scale invariant with respect to the matrix X, except if X is an
exact joint diagonaliser. So to overcome this limit, a log-likelihood
based cost function is proposed, see [8],

f2 : OB(m) → R, X �→
1

2

nX
i=1

log
det ddiag

`
X�CiX

´
det (X�CiX)

. (5)

Although this function is in fact column-wise scale invariant, it un-
fortunately applies only to the scenario where the set of matrices to
be jointly diagonalised are positive definite.

More recently, to avoid these drawbacks with the functions (4)
and (5), a new subspace fitting based cost function is developed in
[2]. Following our analysis in the next section, however, we can
show that this cost function does not share the features, which we
will derive for both the off-norm function and the log-likelihood
function. In other words, the block Jacobi-type NoJD method de-
veloped in this work cannot be applied to it. Therefore, discussion
and analysis on the subspace fitting function as in [2] are omitted.

Before we continue, let us review some basic concepts of
OB(m). It is known that OB(m) is an m(m − 1) dimensional
smooth manifold. The tangent space of OB(m) at X ∈ OB(m) is
defined by

TXOB(m) =
˘
H ∈ R

m×m|ddiag(X�
H) = 0

¯
. (6)

Let denote the set of all m×m matrices with all diagonal entries
equal to zero by

off(m) =
˘
Z ∈ R

m×m|zii = 0, for i = 1, . . . , m
¯
. (7)

Lemma 1 For every point X ∈ OB(m), the following map

μX : off(m) → OB(m),

Z �→ X(Im + Z) diag
n

1
‖X(e1+z1)‖

, . . . , 1
‖X(em+zm)‖

o
,
(8)

where Z = [z1, . . . , zm] ∈ off(m) and ei is the i-th standard basis
vector of Rm, is a local and smooth parameterisation aroundX with
the following properties. For a given X = [x1, . . . , xm] ∈ OB(m)
and Θ = [θ1, . . . , θm] ∈ off(m),
(i) μX(0) = X, and
(ii) H := DμX(0)(Θ) ∈ TXOB(m), where

H =
ˆ
Π(x1)Xθ1, . . . , Π(xm)Xθm

˜
. (9)

Here Π(xi) := Im − xix
�
i is the orthogonal projection oper-

ator onto the complement of span(xi).

3. DERIVATION OF BLOCK JACOBI-TYPEMETHODS
FOR EXACT NOJD

All analysis and derivation in this section are undertaken under the
Exact NoJD setting. In Section 3.1, we first provide critical point
analysis of the functions (4) and (5). The Hessians of both functions
at a joint diagonaliser are shown to be positive definite and share
the nice structure of being block diagonal. This leads to a family of
block Jacobi-type NoJD methods in Section 3.2.

3.1. Analysis of Cost Functions for Exact NoJD

3.1.1. The Off-norm Function

Taking the first derivative of f1, evaluated atX ∈ OB(m) in tangent
directionH ∈ TXOB(m), we get

D f1(X)H =
nX

i=1

tr
“
off
`
X

�
CiX

´
X

�
CiH

”
. (10)

LetX∗ ∈ OB(m) be a joint diagonaliser, obviously

D f1(X
∗)H = 0, (11)

i.e., any diagonaliser of the Exact NoJD problem (2) is a criti-
cal point of f1. We now calculate the Hessian of f1 at such an
X∗, i.e. the symmetric bilinear form Hf1

(X∗) : TX∗OB(m) ×
TX∗OB(m) → R. Using Lemma 1, we get

Hf1
(X∗)(H,H) = d2

d t2
(f1 ◦ μX∗)(tΘ)

˛̨̨
t=0

=
nX

i=1

tr

„“
off
`
X

∗�
CiH

´
+ off

`
H

�
CiX

∗´”
X

∗�
CiH

«
.

(12)

By the construction of Exact NoJD (1), we know

X
∗ = A

−�Δ ∈ OB(m) (13)

is a joint diagonaliser. Here Δ = diag
˘
δ1, . . . , δm

¯
∈ R

m×m

normalises each column of A−�. It is then equivalent to A =
(X∗)−�Δ. Thus, we can compute

X
∗�

CiH = X
∗�(X∗)−�ΔΛiΔ(X∗)−1

H

= ΔΛiΔ(X∗)−1
H.

(14)

Let us denote Di = diag
˘
di1, . . . , dim

¯
= ΔΛiΔ, i.e. dij =

δ2
j λij . By recalling Eq (9), a direct computation gives

Hf1
(X∗)(H,H) =

nX
i=1

mX
1≤j<k≤m

(dijθjk + dikθkj)
2

=
mX

1≤j<k≤m

»
θjk

θkj

–� 24 nP

i=1

d2

ij

nP

i=1

dijdik

nP

i=1

dijdik

nP

i=1

d2

ik

35
| {z }

=:B
jk
1

»
θjk

θkj

–
.

(15)

Clearly, the Hessian of f1 at a joint diagonaliser X∗ is at least posi-
tive semi-definite, and diagonal, in terms of 2×2 blocks, with respect
to the standard basis of the parameter space R

m×(m−1). Then, the
definiteness of the Hessian depends on the determinant of B

jk
1 ’s,

which is computed by

det(Bjk
1 ) =

„ nX
i=1

d
2
ij

«„ nX
i=1

d
2
ik

«
−

„ nX
i=1

dijdik

«2

= δ
4
j δ

4
k

 „ nX
i=1

λ
2
ij

«„ nX
i=1

λ
2
ik

«
−

„ nX
i=1

λijλik

«2!
.

(16)
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By the Cauchy-Schwarz inequality, it can be shown that det(Bjk
1 )

is certainly non-negative, and equal to zero if and only if λj =
(λij)

n
i=1 ∈ R

n and λk are linearly dependent. Thus, by recalling the
uniqueness condition of solutions of Exact NoJD, i.e. theorem 2.3 in
[3], we conclude

Lemma 2 Let the Exact NoJD problem (2) have a unique joint
diagonaliser. Then the Hessian of the off-norm function (4) at the
joint diagonaliser is positive definite.

3.1.2. The Log-likelihood Function

Now we briefly apply a similar analysis to the log-likelihood func-
tion f2 (5). Note that, we now assume that the set of matrices
{Ci}

n
i=1 are all positive definite, i.e. λij > 0 for all i = 1, . . . , n

and j = 1, . . . , m.
The first derivative of f2 is computed by

Df2(X)H =

nX
i=1

tr
“̀

ddiag(X�
CiX)

−́1̀

X
�
CiH

´
−X

−1

H
”
. (17)

It can be shown that a joint diagonaliser X∗ ∈ OB(m) of the Exact
NoJD (2) is a critical point of f2, i.e., D f2(X

∗)H = 0. Simi-
larly, the Hessian of f2 at X∗, i.e. the symmetric bilinear form
Hf2

(X∗) : TX∗OB(m) × TX∗OB(m) → R, can be computed by

Hf2
(X∗)(H,H) = d2

d t2
(f2 ◦ μX∗)(tΘ)

˛̨̨
t=0

=
nX

i=1

mX
1≤j<k≤m

„
dij

dik

θ
2
jk + 2θjkθkj +

dik

dij

θ
2
kj

«

=
mX

1≤j<k≤m

»
θjk

θkj

–� 24 nP

i=1

dij
dik

n

n
nP

i=1

dik
dij

35
| {z }

=:B
jk
2

»
θjk

θkj

–
.

(18)

Using that dij = δ2
j λij , we compute

det(Bjk
2 ) =

„ nX
i=1

dij

dik

«„ nX
i=1

dik

dij

«
− n

2

=

„ nX
i=1

λij

λik

«„ nX
i=1

λik

λij

«
− n

2
.

(19)

By Chebyshev’s sum inequality, the determinant det(Bjk
2 ) is non-

negative, and equal to zero if and only if λj and λk are linearly
dependent. Thus we conclude

Lemma 3 Let the set of matrices {Ci}
n
i=1 constructed by (1) be all

positive definite, and the Exact NoJD problem (2) have a unique
joint diagonaliser. Then the Hessian of the log-likelihood function
(5) at the joint diagonaliser is positive definite.

It is important to notice that, the Hessian of the log-likelihood func-
tion f2 (5) at a joint diagonaliser shares the same block diagonal
structure as the Hessian of the off-norm function f1 (4).

3.2. Block Jacobi-type Exact NoJD Algorithm

In this subsection, we develop a family of block Jacobi-type meth-
ods, which optimise the functions f1 and f2, by using the block dia-
gonal structure of the Hessians at a joint diagonaliser shared by both
functions.

A block Jacobi-type method consists of an iterative applica-
tion of so-called grouped variable sweep operations. Let Θjk =

(θjk)m
i,j=1 ∈ off(m) be a zero matrix except for the jk- and

kj-th entries, and denote θ = [θjk θkj ]
� ∈ R

2. For any point
X ∈ OB(m), we construct a family of maps

˘
ν

(X)
jk

¯m

1≤j<k≤m
by

ν
(X)
jk : R

2 → OB(m), θ �→ μX(Θjk). (20)

Then, a block Jacobi-type method for optimising the functions f1

and f2 is described as

Algorithm 1 Block Jacobi-type NoJD Method

Step 1: Given an initial guess X0 ∈ OB(m) and set s = 0.
Step 2: Set s = s + 1 and letXs = Xs−1.

For 1 ≤ j < k ≤ m, update

Xs ← ν
(Xs)
jk

`
θ
∗´,

where

θ
∗
=

(
argmin

θ∈R2

ft◦ν
(Xs)
jk (θ), if ft◦ν

(Xs)
jk (θ) �≡ ft(Xs);

0, otherwise.
Step 3: If ‖Xs − Xs−1‖ is small enough, stop.

Otherwise, go to Step 2.

Here, t ∈ {1, 2} and ‖ · ‖ is any matrix norm.

Let denote the image of the derivativeD ν
(X)
jk (0) : R

2 → TXOB(m)

by V
(X)

jk := im D ν
(X)
jk (0). It is clear that the set {V (X)

jk }m
1≤j<k≤m

forms a direct sum decomposition of the tangent space TXOB(m).
By recalling the computations (15) and (18), it can be shown that
the vector subspaces V

(X)
jk are mutually orthogonal with respect to

the Hessians of f1 and f2 at a joint diagonaliser, which is a nonde-
generate critical point of both functions by Lemma 2 and 3. Thus,
following theorem 2.1 in [6], we summarise the local convergence
property without proof in the following.
Theorem 1 Let the Exact NoJD problem (2) have a unique joint
diagonaliser. Then the block Jacobi-type method, Algorithm 1, con-
verges locally quadratically fast to the joint diagonaliser.

Let us look at Algorithm 1 a bit closer. Within a sweep (Step 2)
withXs = [x

(s)
1 , . . . , x

(s)
m ] ∈ OB(m), the (j, k)-th iteration solves

essentially a NoJD problem of the set of 2 × 2 symmetric matrices
{B

(i)
jk }

n
i=1, constructed by

B
(i)
jk =

"
b
(i)
jj b

(i)
jk

b
(i)
jk b

(i)
kk

#
∈ R

2
, where b

(i)
jk = x

(s)�
j Cix

(s)
k . (21)

It has been shown in [11] that, under the Exact NoJD setting, a joint
diagonaliser of such a subproblem (21) can be obtained in closed-
form. In other words, the so-called DNJD algorithm in [11] is a
special case of Algorithm 1. Therefore, the local convergence pro-
perty of the DNJD follows directly from Theorem 1. Nevertheless,
in general, the (j, k)-th iteration minimises the following functions,
either

f1 ◦ ν
(X)
jk : R

2 → R,

θ �→
nX

i=1

(b
(i)
jk + b

(i)
jj θjk + b

(i)
kkθkj + b

(i)
jk θjkθkj)

2

‖xj + θkjxk‖2 ‖xk + θjkxj‖2
,
(22)

or

f2 ◦ ν
(X)
jk : R2→R, θ �→

nX
i=1

log(b
(i)
jj +2b

(i)
jk θkj+b

(i)
kkθ

2
kj)

+ log(b
(i)
jj θ

2
jk + 2b

(i)
jk θjk + b

(i)
kk)−log(1 − θjkθkj)

2
.

(23)
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Fig. 1. Convergence properties of Gauss-Newton-Jacobi NoJD.

4. NUMERICAL EXPERIMENTS

It is well known that performance of block Jacobi-type methods sig-
nificantly depends on the techniques to solve the subproblems, e.g.
in our case, minimising either (22) or (23). In this section, we will
demonstrate local convergence properties of two concrete Jacobi-
type NoJD methods under both the Exact and Approximate NoJD
settings.

For the off-norm function based methods, i.e. minimising the
function (22), although the DNJD algorithm in [11], which occu-
pies a closed-form update derived under the Exact NoJD setting, has
demonstrated its effectiveness even for Approximate NoJD by nu-
merical evidence. There is however no theory to guarantee its con-
vergence. In our experiment, we utilise a Gauss-Newton method to
minimise (22). In the following, we refer to the resulting Jacobi-type
method as Gauss-Newton-Jacobi NoJD method.

For the log-likelihood function based methods, it seems almost
impossible to derive a closed-form solution for minimising (23),
even under the Exact NoJD setting. Nevertheless, an efficient al-
gorithm, developed in a Jacobi-type style by Pham [8], minimises
the upper bound of (23) instead, whose minimum point can be found
in closed-form, and appears to coincide with the minimum point of
(23) under the Exact NoJD setting. In our experiment, we adapt
Pham’s algorithm on the oblique manifold.

The task of our experiment is to jointly diagonalise a set of sym-
metric matrices { eCi}

n
i=1, constructed byeCi = AΛiA

� + εEi, i = 1, . . . , n, (24)

where A ∈ R
m×m is a randomly picked matrix in OB(m), diago-

nal entries of Λi are drawn from a uniform distribution on the in-
terval (9, 11), Ei ∈ R

m×m is the symmetric part of an m × m
matrix, whose entries are generated from a uniform distribution on
the unit interval (−0.5, 0.5), representing additive noise, and ε ∈ R

is the noise level. We set m = 5, n = 20, and run six tests, for
both the Gauss-Newton-Jacobi algorithm and Pham’s algorithm, in
accordance with increasing noise, by using ε = t × 10−2 where
t = 0, . . . , 5.

The convergence of algorithms is measured by the distance of
the accumulation point X∗ ∈ OB(m) to the current iterate Xk ∈
OB(m), i.e., by ‖Xk −X∗‖F. According to Fig. 1 and 2, it is clear
that both algorithms converge locally quadratically fast to a joint di-
agonaliser under the Exact NoJD setting, i.e., ε = 0. Although
Pham’s algorithm was claimed in [8] to converge locally quadrati-
cally fast to a joint diagonaliser under the Approximate NoJD set-
ting, such a property indeed holds no longer for both algorithms with

0 2 4 6 8 10 12
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Fig. 2. Convergence properties of Pham’s algorithm.

the presence of noise. They appear to converge only linearly fast.
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