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ABSTRACT

In civil aviation applications, satellite failures yield unacceptable po-
sitioning errors when using the Global Positioning System (GPS). To
ensure the user security, the navigation system has to fulfill stringent
performance requirements. Thus, detecting and excluding the faulty
GPS measurements is necessary prior to estimating the mobile lo-
cation. Classical fault detection algorithms based on Kalman filters
(KF) are sensitive to the choice of an appropriate motion model for
the mobile. To overcome this difficulty, we propose in this paper a
new fault detection algorithm wherein the KF are replaced by multi-
ple model algorithms. In this way, both the false alarm rate and the
position mean square error are shown to be decreased.

Index Terms— Fault Diagnosis, Global Positioning System,
Navigation, Recursive Estimation, Multiple Model.

1. INTRODUCTION

In civil aviation, the navigation system has to fulfill stringent per-
formance requirements in terms of reliability and accuracy to ensure
the user safety. In addition to estimating the aircraft motion, the nav-
igation system has to provide alerts to the user when the positioning
error exceeds bounds defined by the International Civil Aviation Or-
ganization (ICAO). When using the GPS, these so-called positioning
failures are due to satellite dysfunctioning. GPS integrity monitor-
ing is then concerned with detecting and excluding faulty satellite
measurements. For this purpose, several algorithms have been pro-
posed, including the well-known Multiple Solution Separation al-
gorithm (MSS) [1]. It consists of a bank of estimators determining
the aircraft position, based on a main estimator using all the avail-
able GPS measurements and sub-estimators using different subsets
of the GPS measurements. Then, the faulty measurement detection
and exclusion is performed by comparing the main solution with the
different sub-solutions. First designed to detect a single failure at a
time, the MSS has been modified to accommodate multiple failures
in [2]. In a standalone GPS context, the MSS is applied with least
square (LS) estimators. A Kalman Filter (KF) based implementation
is expected to improve detection performance. However, in this case,
the main problem is to choose an appropriate state model for the ki-
netic parameters. Indeed, abrupt changes in the aircraft dynamics
are misinterpreted by the MSS algorithm as measurement failures
resulting in false alarms1. To overcome this difficulty, we propose to
use Multiple Model (MM) algorithms, and more precisely the Inter-
acting Multiple Model (IMM) introduced by Bar-Shalom [4], as an
alternative to KF in the MSS filter hierarchy.

1It should be noted that a MSS based on a hierarchy of KF has already
been applied to integrate GPS with Inertial Navigation Systems (INS) [3]. In
this case, the INS provides a reference model for the aircraft motion. Never-
theless, this approach is costly in terms of material resources.

The remainder of the paper is organized as follows. In section 2,
we formulate the GPS navigation problem in the presence of satel-
lite failures. In section 3, we present the classical MSS algorithm.
Section 4 is dedicated to the proposed algorithm. Simulation results
are provided in section 5. Finally, conclusions and perspectives are
drawn in Section 6.

2. THE GPS NAVIGATION PROBLEM

Aircrafts are equipped with GPS receivers which determine their
own positions by measuring the propagation delays of signals broad-
cast by in-view GPS satellites (SV). By denoting N the number of
SV, N distance measurements are obtained at each time step by mul-
tiplying the propagation delays by the speed of light. The receiver
position in 3 dimensions has to be estimated, hence 3 measurements
are in theory sufficient. However, due to the synchronization issues,
the receiver clock offset with respect to the GPS reference time has to
be estimated as well. Consequently, at least 4 measurements, namely
4 SV, are required to solve the positioning problem.

Let Y (k) be the observation vector of size N at time2 k, which
is composed of the N measurements associated to the SV tracked by
the receiver. Its ith component, for i ∈ [1, N ], satisfies:

Yi(k) = ‖p(k) − pi(k)‖ + b(k) + σi(k)εi(k), (1)

where p(k) = [x(k), y(k), z(k)]T represents the position coordi-
nate vector of the receiver in the system of coordinates chosen as a
reference for the motion3, pi(k) = [xi(k), yi(k), zi(k)]T is the po-
sition coordinate vector of the ith satellite, b(k) is the GPS receiver
clock offset with respect to the GPS reference time, ‖.‖ denotes the
euclidian distance, εi(k) is a white Gaussian random variable of
standard deviation (std) 1 and σi is the std of the ith measurement
noise.

However, satellite failures result in measurement errors larger
than the standard GPS measurement noise. Assuming the j th mea-
surement is faulty, the j th component of the measurement vector
Y (k) is also corrupted by a bias μj(k):

Yj(k) = ‖p(k) − pj(k)‖ + b(k) + σj(k)εj(k) + μj(k). (2)

As integrity monitoring algorithms are usually based on the rea-
sonable assumption of a single failure4 at a time to prevent a pro-
hibitive computational complexity, the problem at hand is to detect
the presence of the bias μj(k) on the j th SV while solving the posi-
tioning problem.

2For the sake of simplicity, k stands for kΔT , with ΔT the time interval
between 2 GPS measurements.

3In the following, we consider that the aircraft motion is defined in the
local frame. The local frame is centered at the aircraft position, its axes
pointing to the local vertical, the North and the East direction.

4The satellite failure probability is 10−4/h for GPS.
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3. MULTIPLE SOLUTION SEPARATION ALGORITHM

In this section, we focus on the KF-based implementation of the
MSS. After a brief description of the state space representation of the
system, we present the structure of the MSS algorithm. The reader
can refer to [1] for more insight on the classical MSS method.

3.1. Motion and measurement model
In addition to a measurement model, KF requires a state model de-
scribing the a priori dynamics of the unknown parameters. In this
study, we consider a 2nd order model which consists of jointly esti-
mating the mobile position and velocity as well as the GPS receiver
clock offset and its derivative. In this way, the aircraft is assumed to
have a nearly uniform motion with occasional bursts of acceleration.
The overall state vector is defined as follows:

X(k) =
[
x(k), ẋ(k), y(k), ẏ(k), z(k), ż(k), b(k), ḃ(k)

]T

.

Then, the state vector evolution is expressed as:

X(k) = Φ(k)X(k − 1) + G(k)w(k), (3)

where w(k) is the state noise vector (w(k) ∼ N (0, I4×4)).
The matrices Φ(k) and G(k) are defined as follows:

Φ(k) = diag ([A(k), B(k)]) ,

G(k) = diag ([E(k), E(k), E(k), Σ(k)]),

where diag([U, V ]) is a block diagonal matrix with matrices U and
V composing the main diagonal. The sub-block matrices are defined
below:

A(k) = diag ([B(k), B(k), B(k)]), B(k) =

(
1 ΔT
0 1

)
,

E(k) = σacc

(
ΔT2

2
ΔT

)
and Σ(k) =

(
ξ1

ξ2

)
,

with ξi the state model components for the clock offset drift [5] and
σacc the std of the acceleration.

The observation model is provided by equation (1). For the over-
all observation vector, we denote:

Y (k) = h (X(k); k) + R(k)ε(k). (4)

where, at time k, one has ε(k) = [ε1(k), . . . , εN (k)]T and
R(k) = diag([σ1, . . . , σN ]). The relationship between the state
vector and the observation vector is expressed by a non linear func-
tion h ( . ; k): its components are the geometric SV to receiver
distances. Therefore, we use an Extended Kalman Filter (EKF) to
perform the state estimation. In the next section, we denote H(k)
the so-called observation matrix, which is composed of the partial
derivatives of h ( . ; k) with respect to the state vector components
evaluated at the EKF prediction step.

3.2. MSS fault detection step
In this section, we present the principle of the MSS algorithms ap-
plied to GPS integrity monitoring. A primary state estimate referred5

to as X̂+
00(k) is computed by a main filter F00, here an EKF, which

uses the N available SV measurements at time k. In parallel, sub-
filter state estimates, denoted X̂+

0n(k), are maintained by N EKF,

5In the following, the superscripts + and − refer to the a posteriori esti-
mation step and a priori estimation step, respectively.

denoted {F0n}n∈[1,N ]. Filter F0n incorporates all available mea-
surements except the nth one. If nthsatellite fails, it will drive the so-
lution computed by filter F0n away from the primary solution. Fault
detection (FD) is thus performed by applying an hypothesis test con-
sisting of comparing pairwise the main filter and the sub-filter esti-
mates. The test statistic is taken as the separation of the primary
solution and the sub-filter solutions, denoted {dX+

0n(k)}n∈[1,N ]:

dX+
0n(k) = X̂+

00(k) − X̂+
0n(k). (5)

Classically in aviation applications, the horizontal and vertical
errors are processed separately. We focus herein on the horizontal
(x, y coordinates) position separation, denoted dX+

H0n(k) for the
filter F0n. Its 2 × 2 covariance matrix is dP+

H0n(k).
A failure is detected by applying the following hypothesis test:{
H0 no failure: ∀ n ∈ {1, N}, ‖dX+

H0n(k)‖ < D0n,
H1 failure detection: ∃ n ∈ {1, N}, ‖dX+

H0n(k)‖ ≥ D0n,

where D0n is a decision threshold which is computed for N mea-
surements as a function of the false alarm probability Pfa. Vector
dX+

H0n(k) is Gaussian distributed, therefore the test statistic, like its
amplitude, follows a Rayleigh distribution. However, in the Solution
Separation patent description [6], only the principal component of
the separation is considered. Thus, D0n satisfies:

D0n =
√

λdP Q

(
1

2

(
1 − Pfa

N

))
, (6)

where Q(u) is the error function6, λdP is the maximal eigenvalue
of dP+

H0n(k) which is a sub matrix of the covariance matrix of
dX+

0n(k), denoted dP+
0n(k). This matrix is expressed as:

dP+
0n(k) = E

[
dX+

0n(k)dX+
0n(k)T

]
,

= P+
00(k) + P+

0n(k) − Γ+
0n(k) − (

Γ+
0n(k)

)T
, (7)

with P+
00(k) and P+

0n(k) the covariance matrices of the estimation
error for the primary EKF and the sub-EKF excluding the nth mea-
surement, respectively. In addition, Γ+

0n(k) is the cross covariance
matrix between the primary EKF and the F0n sub-EKF estimation
error which is sequentially updated, as described in [1].

4. THE PROPOSED IMM-MSS ALGORITHM

This section describes the proposed FD algorithm which consists
of replacing the EKF by MM algorithms to avoid false alarms due
to abrupt changes in the aircraft motion. We first present the MM
approach and more particularly the IMM. Then, we focus on the FD
step of our new algorithm.

4.1. The Interacting Multiple Model algorithm
MM algorithms aim at jointly estimating the state vector and decid-
ing which model best describes its evolution. They consider a set
of M possible state space representations. The equations describing
the state space model {m(i)}i∈[1,M ] are:

X(k) = Φ(i)(k)X(k − 1) + G(i)(k)w(i)(k), (8)
Y (k) = h (X(k); k) + R(k)ε(k). (9)

6The error function is defined as Q(u) = 2√
π

∫ u

0 exp (−a2)da.
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It should be noted that in the general case the observation model
matrices can also vary with i.

The model switching process considered is of the Markov type.
This process is specified by a transition matrix. Its components are
expressed as, for (i, j) ∈ [1, M ] × [1, M ]:

πji = Pr

[
m

(i)
k+1|m(j)

k

]
, ∀ m(i), m(j), k, (10)

where m
(i)
k means that m(i) is used to describe the state vector evo-

lution at time k.
The IMM consists of running as many EKF as possible model

sequences up to the current time. Then, the overall state estimate
is obtained by combining their estimates. Nevertheless, the number
of sequences exponentially grows with time, amounting to Mk+1

at time k. To keep a constant number of EKF, the IMM applies a
merging strategy described hereafter in Figure 1.

Filter based on m(1)

Filter based on m(2)

Cooperation
Strategy

Y (k)

X̂(1−)(k), P (1−)(k)

X̂(2−)(k), P (2−)(k)

L
(1)
k

L
(2)
k

X̂(1+)(k), P (1+)(k)

X̂(2+)(k), P (2+)(k)

X̂+(k)

Fig. 1. Structure of MM algorithm (with 2 model-based filters)

Let us assume, at time k − 1, the overall state estimate satisfies:

X̂+(k − 1) =
M∑

j=1

α(j+)(k − 1)X̂(j+)(k − 1), (11)

where, at time k − 1, X̂(j+)(k − 1) is the a posteriori state estimate
based on model m(j) and α(j+)(k − 1) = Pr[m

(j)
k−1|Y1:k−1].

The IMM error covariance matrix satisfies:

P+(k−1) =
M∑

j=1

α(j+)(k−1)

[
P (j+)(k − 1) + Δ

(j)
k−1

(
Δ

(j)
k−1

)T
]
,

(12)
with P (j+)(k−1) the error covariance matrix for X̂(j+)(k−1) and
Δ

(j)
k−1 = X̂+(k − 1) − X̂(j+)(k − 1), at time k − 1.

At that stage, each of the M parallel EKF estimates
{X̂(j+)(k − 1)}j∈[1,M ] can evolve according to any of the state
models {m(i)}i∈[1,M ], leading to M × M possible predicted state
vectors:

X̂(ji−)(k) = Φ(i)(k)X̂(j+)(k − 1). (13)
To avoid an exponential increase of the computational complex-

ity, the IMM merges the state predictions based on the same model
at time k. In this way, the number of necessary EKF is decreased
from M × M to M . The predicted state vector based on model
{m(i)}i∈[1,M ] and its associated covariance matrix become:

X̂(i−)(k) =

M∑
j=1

α(ji−)(k)X̂(ji−)(k), (14)

P (i−)(k) =
M∑

j=1

(
α(ji−)(k)

[
P (j+)(k − 1) + Δ

(ij)
k−1

(
Δ

(ij)
k−1

)T
])

+G(i)(k)
(
G(i)(k)

)T

, (15)

where Δ
(ij)
k−1 = X̂(i−)(k)− X̂(j+)(k−1) and the mixing probabil-

ities for {m(i), m(j)}(i,j)∈[1,M ]×[1,M ] satisfy:

α(ji−)(k) =
1

α(i−)(k)
πjiα

(j+)(k − 1), (16)

with α(i−)(k) =
∑M

j=1 πjiα
(j+)(k − 1) the normalizing factor.

α(ji−)(k) is the probability the sequence composed by the model
m(j) at time k and the model m(i) at time k + 1 best describes the
mobile motion.

Then, the standard KF equations are used to update the state
estimates given by (14):

{X̂(i−)(k), P (i−)(k)}M
i=1 →{X̂(i+)(k), P (i+)(k)}M

i=1. (17)

Finally, the IMM iteration is completed by computing the model
probabilities required to merge the M EKF estimates and obtain
the overall state vector estimation from equations (11-12) at time
k. Note that:

α(i+)(k) =
α(i−)(k − 1)L

(i)
k∑M

j=1 α(j−)(k − 1)L
(i)
k

, (18)

with L
(i)
k = Pr

[
Y (k)|m(i)

k , Y (1 : k − 1)
]

the likelihood function

of model m(i) at time k.
After this brief presentation of the IMM algorithm, we detail the

proposed IMM-MSS algorithm by focusing on the FD step in the
next section.

4.2. IMM-MSS fault detection step
When replacing the EKF by IMM, we suggest using as test statistic
the separation between the primary IMM and the IMM sub-filters
using all but one measurement. For the sake of simplicity, we use
the same notations as for the classical MSS, i.e. X̂00(k) the estima-
tion computed by the main filter, etc. Equations (5-7) still hold. The
main difference lies in the computation of the cross covariance ma-
trix Γ+

0n(k). Indeed, since each IMM of the filter hierarchy uses M
EKF, cross correlations between EKF estimation errors based on dif-
ferent models have to be taken into account when updating Γ+

0n(k):

Γ+
0n(k)=

M∑
r=1

M∑
l=1

α
(r+)
00 (k)α

(l+)
0n (k)Γ

(rl+)
0n (k), (19)

with Γ
(rl+)
0n (k)=E

[(
X − X̂

(r+)
00

) (
X − X̂

(l+)
0n

)T
]
,

where the subscript 00 and 0n are associated to the mixing proba-
bilities for the primary IMM and for the IMM excluding the mea-
surement n, respectively. We propose to compute these matrices
sequentially in 2 steps:

Step 1. Prediction step.

Γ
(rl−)
0n (k)=

M∑
q=1

M∑
p=1

α
(qr−)
00 (k)α

(pl−)
0n (k)Φ(r)(k)Γ

(qp+)
0n (k − 1)

(
Φ(l)(k)

)T

+ G(r)(k)
(
G(l)(k)

)T

δ(r − l), (20)

where δ(.) is the dirac impulse.
Step 2. Estimation step.

Γ
(rl+)
0n (k) =

(
I − K

(r)
00 H

(r)
00 (k)

)
Γ

(rl−)
0n (k) × (21)(

I − K
(l)
0nH

(l)
0n (k)

)T

+ K
(r)
00 R(k)

(
K

(l)
0n

)T

,
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Fig. 2. MSE for a nearly uniform motion - Phase 1

ramp error size (m/s) 0.05 0.25 0.75 2.5 5

MSS(2) delay (s) 262.0 48.4 16.9 6.2 3.6
IMM-MSS delay (s) 151.2 30.8 10.8 4.9 3.5

Table 1. Mean delay of ramp failure detection

where K
(r)
00 is the gain of the primary EKF using model m(r) and

H
(r)
0n (k) is the observation matrix of the EKF F0n using the model

m(r).
The performance of this algorithm is studied through simulation

results in the next section.

5. SIMULATIONS AND RESULTS

Several simulations have been conducted to illustrate the perfor-
mance of the proposed algorithm. We have considered a real aircraft
trajectory consisting of 2 phases: phase 1, with a nearly uniform
motion and phase 2, with an accelerated motion. The navigation
data have been generated by using GPS almanac files that provide
the trajectories of the GPS satellites. As for the measurement noise
statistics, they have been set in accordance with RTCA recommenda-
tions [7]. Satellite failures have been simulated by introducing ramp
errors of standard values given by ICAO. Finally, we adjust the hy-
pothesis test parameters in accordance with a non precise approach
flight phase7, i.e. a false alarm rate Pfa = 2.778.10−9/test.

In this study, we suggest using different values for the covariance
matrix of the process noise corresponding to low and high values
of the mobile acceleration8. The IMM-MSS is compared with the
classical MSS by considering two 2nd order state models:

• m(1) with σacc = 0.1 m/s2,
• m(2) with σacc = 15 m/s2.

In the sequel, we denote MSS(1), respectively MSS(2), the FD al-
gorithm based on model m(1), respectively model m(2). The IMM-
MSS uses a combination of both models.

As for the IMM model switching process, the probability for
the dynamics of the aircraft to change between 2 consecutive time
steps is assumed to be low. Thus, the transition probability is set to
πij = 0.9 for i = j.

The performance parameters considered in this paper are the
mean detection delays (MDD) and the position mean square error
(MSE). They have been computed by averaging the results obtained
for 50 different realizations of the measurement noise.

Table 1 shows the MDD for different ramp error sizes. The
MDD of the MSS(1) are not represented because model m(1) yields
numerous false detections. Indeed, we observe a false alarm rate of

7It should be noted that the RTCA performance recommandations are dif-
ferent according to the flight phases.

8Only the matrix G(k) varies with i in the state space representation.
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Fig. 3. MSE for an accelerated motion - Phase 2

7.5 × 10−3/test during phase 2 of the trajectory. More precisely,
due to the small value of σacc, model m(1) is not appropriate when
the aircraft undergoes manoeuvers or high accelerations. Further-
more, the IMM-MSS outperforms the MSS(2), particularly for small
ramp error sizes. For instance, the MDD is decreased by more than
100 s for ramps of 0.05 m/s. Figures 2 and 3 show the position
MSE for both phases of the aircraft trajectory. During phase 1, the
IMM-MSS outperforms the MSS(2) and exhibits the same MSE as
the MSS(1). During phase 2, model m(2) is the most appropriate
model. As a result, the MSS(2) has a slightly smaller MSE than
the IMM-MSS which makes the compromise between model m(1)

and m(2). It should be noted that the MSS(1) MSE increases up to
15000 m2 during this phase and therefore is not represented for the
sake of clarity. As a conclusion, the proposed algorithm on aver-
age yields lower MSE by selecting at each step the most convenient
motion model.

6. CONCLUSION

In this paper, we have presented a new approach to improve faulty
GPS measurement detection in civil aviation. Our new algorithm is
based on the FD MSS algorithm and a position estimation performed
by a IMM algorithm. The IMM-MSS has a higher computational
complexity than classical FD algorithms since the complexity is di-
rectly linked to the number of the filters operating in parallel. How-
ever, the MSE and the detection delays of the proposed algorithm
are on average lower than the classical MSS ones. We are currently
working on IMM-MSS based on more elaborated models including
turn models for instance.
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