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ABSTRACT

Two new theorems show how deliberately adding quantizer noise
can improve statistical signal detection in array-based nonlin-
ear correlation detection even in the case of infinite-variance α-
stable channel noise. The first theorem gives a necessary and
sufficient condition for such quantizer noise to increase the de-
tection probability for a fixed false-alarm probability. The sec-
ond theorem shows that the array must contain more than one
quantizer for a stochastic-resonance noise benefit and that the
noise benefit improves in the small-quantizer noise limit as the
number of array quantizers increases. It further shows that sym-
metric uniform quantizer noise gives the optimal noise benefit
among all symmetric scale-family noise types.

Index Terms— optimal noise, stochastic resonance, nonlin-
ear detection, neyman-pearson, array processing

1. NOISE BENEFITS IN NONLINEAR SIGNAL
DETECTION

Some noise can improve nonlinear signal processing [9, 13, 15,
18, 20, 24]. The stochastic resonance (SR) effect in signal de-
tection occurs when small amounts of noise improves detec-
tion performance while too much noise degrades it [5, 6, 11,
21, 22, 29]. Such SR noise benefits arise in many physical
and biological signal systems from carbon nanotubes to neurons
[7, 10, 14, 19, 23, 25, 27]. We focus here on the special case of
SR in a quantizer-array-based nonlinear correlation detector that
uses Neyman-Pearson or constant-false-alarm hypothesis test-
ing to detect the presence of a constant (dc) signal in infinite-
variance α-stable channel noise. Such detection occurs in sonar,
radar, and watermark detection [2, 3]. We show that injecting
small amounts of quantizer noise in this type of nonlinear de-
tector can increase the signal detection probability PD while the
false-alarm probability PFA stays at a preset level. Figure 2 shows
SR’s characteristic nonmonotonic signature of noise-enhanced
signal detection−here with more than 12% increase in the de-
tection probability. This appears to be the first demonstration of
the SR effect for Neyman-Pearson signal detection in α-stable
channel noise.

The detector consists of a nonlinear preprocessor that pre-
cedes a correlator and Neyman-Pearson likelihood-ratio test on
the correlator’s output. This nonlinear detector takes K sam-
ples of a noise-corrupted signal and sends each sample to the
nonlinear preprocessor array of Q noisy quantizers connected
in parallel. Each quantizer in the array adds its independent
quantizer noise to the noisy input sample and then quantizes this
doubly noisy data sample into a binary value. The quantizer ar-
ray output for each sample is just the sum of all Q quantizer

outputs. The correlator then correlates these preprocessed K
samples with the signal. The detector’s final stage applies the
Neyman-Pearson likelihood-ratio test to the correlator’s output
so that the false-alarm probability PFA remains at a preset level τ .

Stocks [24] first showed that adding quantizer noise in an
array of parallel-connected quantizers improves the mutual in-
formation between the array’s input and output. Then Rousseau
and Chapeau-Blondeau [20, 21] used such a quantizer array for
signal detection. They first showed the SR effect for Neyman-
Pearson detection of time-varying signals and for Bayesian de-
tection of both constant and time-varying signals in different
types of non-Gaussian channel noise. But their noise always
had finite variance. Their work also did not characterize their
observed SR effects in terms of detector parameters such as the
number of quantizers Q or the type of quantizer noise.

We present two SR theorems that apply to broad classes of
channel and quantizer noises for the above nonlinear detector.
We show that adding small amounts of quantizer noise in the de-
tector produces the SR effect for dc signal detection in α-stable
channel noise. Theorem 1 in Section 3 gives a necessary and
sufficient condition for this type of SR noise benefit. This result
applies to all types of symmetric channel noise and symmetric
quantizer noise. It requires only that the number of data samples
K be large.

Theorem 2 gives three results based on Theorem 1. They
require only that the quantizer noise come from a symmetric
scale-family probability density function (pdf) with finite vari-
ance. These results involve an initial SR effect or increase in the
detection probability PD for small amounts of noise. We define
the SR effect as an initial SR effect if there exists some b > 0
such that PD(σN) > PD(0) for all σN ∈ (0, b). Here PD(σN)
is the detection probability when the quantizer noise intensity is
σN and PD(0) is the detection probability in the absence of quan-
tizer noise. The first result shows that Q > 1 is necessary for the
initial SR effect. The second result is that the rate of the initial
SR effect in the small quantizer noise limit (limσN→0

dPD
dσN

) im-

proves if the number of quantizers Q in the array increases. The
final result is that symmetric uniform quantizer noise gives the
optimal initial SR effect rate among all symmetric scale-family
noise types. The next section presents the theorems’ framework
of signal detection in α-stable channel noise.

2. BINARY SIGNAL DETECTION IN α-STABLE NOISE

Consider detecting a known deterministic signal sk in additive
white symmetric α-stable (SαS) channel noise Wk given K ob-
served samples:

H0 : Xk = Wk k = 1, 2, ...,K,
H1 : Xk = sk + Wk k = 1, 2, ...,K.

(1)
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The Wk are independent and identically distributed (i.i.d.) zero-
location SαS random variables. We consider only constant (dc)
signals so that sk = A for all k. The characteristic function ϕ
of the SαS noise random variable Wk has the exponential form
[8, 16]

ϕ(ω) = exp(jδω − γ|ω|α) (2)

where finite δ is the location parameter, γ > 0 is the dispersion,
and α ∈ (0, 2] is the characteristic exponent that controls the
density’s tail thickness. SαS pdfs can model heavy-tailed or
impulsive noise in many applications such as underwater acous-
tic signals, telephone noise, clutter returns in radar, internet traf-
fic, financial data, and transform domain image or audio signals
[1, 3, 16]. The only closed-form SαS pdfs are for α = 1 and α
= 2 for the respective Cauchy and Gaussian densities. The rth

lower-order moments of an α-stable pdf with α < 2 exist if and
only if r < α. So the Gaussian density alone has finite vari-
ance and higher-order moments. The location parameter δ is the
mean for 1 < α≤ 2 and serves only as the median for 0 < α ≤ 1.

The uniformly most powerful detector for the hypotheses in
(1) is a Neyman-Pearson log-likelihood ratio test [26, 28]:

ΛNP(X) =
K∑

k=1

log(fα(Xk-sk))- log(fα(Xk))
H1
>
<
H0

λ (3)

since the observed K samples X = {X1, ..., XK} are i.i.d. We
choose λ so that it has a preset false-alarm probability PFA = τ .
This Neyman-Pearson detector is difficult to implement because
again the SαS pdf fα has no closed form except for α = 1 and
α = 2. A Taylor expansion of ΛNP(X) around Xk in the small-
signal limit gives the locally optimal detector with a familiar
correlation structure [16]:

ΛLO(X) =
K∑

k=1

sk
−f ′

α(Xk)
fα(Xk)

=
K∑

k=1

skgLO(Xk)
H1
>
<
H0

λ̃ (4)

where the score function gLO is nonlinear for α < 2. This test
also is not practical because it uses f ′

α and fα. So researchers
have suggested different suboptimal detectors that preserve the
correlation structure but that replace gLO with other zero-memory
nonlinear functions g [4, 26, 28]. These nonlinearities range
from simple soft-limiters (gSL(x) = ax for |x| < c and gSL(x) =
ac else) and hole-puncher functions (gHP(x) = ax for |x| < c
and gHP(x) = 0 else) to more complex nonlinearities that better
approximate gLO. The next section presents the two SR theo-
rems for the simple nonlinear correlation detector with a noisy
quantizer-array-based nonlinearity gNQ.

3. QUANTIZER NOISE BENEFITS IN NONLINEAR
CORRELATION DETECTOR

Consider the nonlinear correlation detector

ΛNQ(X) =
K∑

k=1

skgNQ(Xk)
H1
>
<
H0

λ̃ (5)

where gNQ(Xk) =
Q∑

q=1

sign(Xk + Nq − θ). (6)

Here θ is a quantization threshold, Nq are independent symmet-
ric scale-family quantizer noises with standard deviation σN , and

sign(Xk +Nq−θ) =±1 for q = 1, ..., Q. We choose θ = A
2 be-

cause the channel noise Wk and the quantizer noise Nq are both
symmetric noises. This detector is simple to implement and re-
quires only one bit to represent each quantizer’s output. These
properties can help in applications such as sensor networks or
distributed systems that have limited energy or involve limited
data handling and storage [12, 17].

Define μi(σN) and σ2
i (σN) as the respective mean and vari-

ance of ΛNQ under the hypothesis Hi when σN is the quantizer
noise intensity. Then μ0(σN) = −μ1(σN) and σ2

0(σN) = σ2
1(σN)

for all σN because both W and N are symmetric. The mean μi

and variance σ2
i of the test statistic ΛNQ depend on both the addi-

tive channel noise W and the quantizer noise N . So μi and σ2
i

depend on the noise intensities σζ and σN . But we write μi(σN)
and σ2

i (σN) because we control only the quantizer noise inten-
sity σN .

The pdf of ΛNQ is approximately Gaussian for either hypoth-
esis because the central limit theorem applies to the sum (5) if
the sample size K is large. Then Theorem 1 gives a necessary
and sufficient condition for the SR effect.

Theorem 1: Suppose that ΛNQ|H0 ∼ N(μ0(σN), σ2
0(σN)) and

ΛNQ|H1 ∼ N(μ1(σN), σ2
1(σN)) where μ0(σN) = −μ1(σN) and

σ2
0(σN) = σ2

1(σN). Then

σ1(σN)μ′
1(σN) > μ1(σN)σ′

1(σN) (7)

is necessary and sufficient for the SR effect in Neyman-Pearson
detection using the nonlinear test statistic ΛNQ.

Proof: The Neyman-Pearson detection rule based on ΛNQ re-
jects H0 if ΛNQ > λτ where we choose λτ such that P (ΛNQ >
λτ |H0) = τ . Then the detection threshold is λτ = zτσ0(σN)
+ μ0(σN) where 1 − Φ(zτ ) = τ for the cumulative distribution
function Φ of the standard normal random variable. This gives
the detection probability

PD = 1− Φ
(

zτ − 2μ1(σN)
σ0(σN)

)
(8)

because μ0(σN) = −μ1(σN) and σ2
0(σN) = σ2

1(σN). Then

dPD

dσN

= 2φ

(
μ1(σN)
σ1(σN)

)
σ1(σN)μ′

1(σN)− μ1(σN)σ1
′(σN)

σ2
1(σN)

(9)

with normal pdf φ = Φ′. So σ1(σN)μ′
1(σN) > μ1(σN)σ′

1(σN)
is necessary and sufficient for the SR effect ( dPD

dσN
> 0) because

φ > 0. �
Figure 1 shows a simulation instance of the SR condition in

Theorem 1 for dc signal detection in impulsive infinite-variance
channel noise. The dc signal has magnitude A = 0.5 and we set
the false-alarm probability to PFA = 0.1. The channel noise is
SαS with parameters α = 1.9, γ = 1, and δ = 0. The detec-
tor preprocesses each of the K = 50 noisy samples Xk with Q
= 15 quantizers in the array. Each quantizer has quantization
threshold θ = A/2 and adds an independent uniform quantizer
noise N to the noisy sample Xk before quantization. Figure
1(a) shows the plot of σ1(σN)μ′

1(σN) - μ1(σN)σ′
1(σN) versus the

standard deviation σN of the additive uniform quantizer noise.
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Fig. 1. Plots of inequality condition (7) for the predicted SR effect and

the detection probabilities with and without the Gaussian approximation of

ΛNQ’s distribution for dc signal detection in α-stable channel noise. (a) The

plot of σ1(σN)μ′
1(σN) - μ1(σN)σ′

1(σN) versus the standard deviation σN of

additive uniform quantizer noise. The zero-crossing occurs at the quantizer

noise standard deviation σNopt . (b) The solid line and square markers show the

respective plots of the detection probabilities PD with and without the Gaus-

sian approximation of ΛNQ’s distribution. Adding small amounts of quantizer

noise N improves the detection probability PD. This SR effect occurs until

inequality (7) holds. So σNopt maximizes the detection probability.

Adding small amounts of quantizer noise N improves the detec-
tion probability PD in Figure 1(b). This SR effect occurs until the
inequality (7) holds in Figure 1(a). Figure 1(b) also shows the
accuracy of the Gaussian approximation of the detection statistic
ΛNQ’s distribution. The solid line shows the plot of the detection
probability PD using the Gaussian approximation of ΛNQ’s dis-
tribution. We used 105 simulation trials to estimate μ1(σN) and
σ1(σN) and used them in (8) to obtain this plot. Circle markers
show the actual detection probabilities.

Theorem 2 below states that more than one quantizer is nec-
essary for the initial SR effect and that the rate of initial SR ef-
fect increases as the number of quantizer increases. It also states

that uniform quantizer noise gives the maximal initial SR ef-
fect among all finite-variance symmetric scale-family quantizer
noise types. Theorem 2 follows from Theorem 1 if we substi-
tute the expressions for μ1(σN), μ′

1(σN), σ1(σN), and σ′
1(σN)

and then pass to the limit σN → 0. The proof is quite lengthy
and we omit it for reasons of space.

Theorem 2:
(a) Q > 1 is necessary for the initial SR effect in the Neyman-
Pearson detection of a dc signal in a channel with SαS noise W
using the nonlinear test statistic ΛNQ in (5).

(b) Suppose that the initial SR effect occurs with Q1 quantizers
and with some symmetric quantizer noise. Then the rate of the
initial SR effect with Q2 quantizers is larger than the rate of ini-
tial initial SR effect with Q1 quantizers if Q2 > Q1.

(c) Zero-mean uniform noise is the optimal finite-variance sym-
metric scale-family quantizer noise in the sense that it maxi-
mizes the rate of the initial SR effect.

Figures 2 and 3 show simulation instances of Theorem 2.
The dashed line in Figure 2 shows that the SR effect does not oc-
cur if Q = 1 as Theorem 2(a) predicts. The solid lines show that
the initial SR effect increases as the number of quantizers Q in-
creases as Theorem 2(b) predicts. Q = 31 quantizers give a 0.865
maximal detection probability and thus a 12.7% improvement
over the noiseless 0.767 detection probability. The horizontal
lines PD(gSL) = 0.84 and PD(gHP) = 0.814 show the respective
detection probabilities of the non-noisy correlation detector with
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Fig. 2. Initial SR effects in a nonlinear correlation detector for dc signal

detection in an impulsive α-stable channel noise (α = 1.9). The solid lines

show that the detection probability PD improves initially as the quantizer

noise intensity σN increases. The dashed line shows that the SR effect does

not occur if Q = 1 as Theorem 2(a) predicts. The solid lines also show that the

rate of the initial SR effect increases as the number of quantizers Q increases

as Theorem 2(b) predicts. The horizontal lines PD(gSL) = 0.84 and PD(gHP) =

0.814 show the respective detection probabilities of the non-noisy correlation

detector with soft-limiter (gSL, a = 2, c = 1) and hole-puncher (gHP, a = 2, c
= 3) nonlinearities.
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Fig. 3. Comparison of initial SR effects in the nonlinear correlation detector

for dc signal detection in α-stable channel noise (α = 1.9) for different types

of symmetric quantizer noise. Symmetric uniform noise gives the maximal

rate of the initial SR effect as Theorem 2(c) predicts whereas symmetric dis-

crete bipolar noise gives the smallest SR effect and is the least robust. The

SR effect is most robust against Laplacian quantizer noise.

soft-limiter (gSL, a = 2, c = 1) and hole-puncher (gHP, a = 2, c =
3) nonlinearities. Detectors with at least Q = 15 quantizers have
maximal detection probabilities that exceed both of these val-
ues. Figure 3 compares the initial SR effects for different types
of simple zero-mean symmetric quantizer noises such as Lapla-
cian, Gaussian, uniform, and discrete bipolar noise. Symmetric
uniform noise gives the maximal rate of the initial SR effect as
Theorem 2(c) predicts. Symmetric discrete bipolar noise gives
the smallest SR effect and is the least robust. The SR effect is
most robust against Laplacian quantizer noise.

An open question is whether some form of Theorem 2 holds
for time-varying signals or for asymmetric α-stable channel noise.
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