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ABSTRACT 
Carrier diverse radars employing two different frequencies, termed 
as dual-frequency radars, prove effective in determining the target 
range in urban sensing and through-the-wall applications. In this 
paper, we derive the maximum likelihood (ML) estimator for the 
dual frequency radar returns for a micro-Doppler motion profile, 
which is commonly exhibited by indoor moving targets. Unlike 
linear models, the respective ML estimator does not have a closed 
form. We solve the ML estimator for dual frequency radar 
operations, using iterative reweighted least squares (IRLS). The 
ML-IRLS algorithm is applied to experimental radar returns for 
estimating the motion parameters of indoor targets. 

Index Terms- Iterative maximum likelihood estimation, 
Doppler radar, Urban sensing, Micro-Doppler. 
 

1. INTRODUCTION 
The problem of urban sensing and through-the-wall imaging 
addresses the desire to obtain an electromagnetic blueprint of 
the scene under consideration along with possible knowledge 
of the type and location of the animate and inanimate targets, 
whether they are moving or stationary [1]. For such 
applications, we tackle the problem of moving target range 
estimation using carrier diverse Doppler radar, which is also 
known as dual frequency radar. The carrier diversity is 
induced by using two different carrier frequencies to satisfy 
the maximum range ambiguity condition based on the a 
priori knowledge (possible through aerial mapping or ground 
access) of the spatial extent of the urban structure under 
surveillance. The technique of using two frequencies to 
estimate range is not new and has been used in automotive 
and other radar applications [2]. Without a doubt, there exists 
many other techniques to estimate range of a moving target, 
for example, linear frequency modulated radar and pulse 
Doppler radar [3]. Such radar systems are wideband and 
employ some form of frequency modulation to obtain the 
range. The major advantages of Doppler radars vs. wideband 
conventional radars for the urban sensing/through-the-wall 
applications can be summarized as follows. 1) Much of the 
RF spectrum may be jammed or taken by other emitters.  2) 
RF penetration through the walls follows a lowpass filtering 
model with typical cutoff in the low GHz range. 3) Many 
modes of urban operations require mobility and simple 

portable radar platforms rather than complex surveillance 
systems.  

In this paper, we deal with a single moving target whose 
motion profile can be modeled by a finite number of 
parameters. In particular, we consider the micro-Doppler 
(MD) which gives rise to sinusoidal FM type radar returns 
[4]. Maximum likelihood (ML) technique for motion 
parameter estimation is then formulated and solved using 
step-wise concentration to obtain an iterative weighted least 
squares algorithm. The ML estimator is initialized using 
suboptimal estimates. Section 2 describes the signal model. 
In Section 3, we discuss the ML and suboptimal schemes for 
the MD motion profile. Section 4 contains results based on 
simulations and experiments, followed by conclusions in 
Section 5.   
 

2. SIGNAL MODEL 
The signal returns for the dual frequency Doppler radar after 
down conversion to baseband can be written as 
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In eq. (1), the target range,  is parameterized by a 

vector of desired parameters  
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 j  is the 
complex reflectivity of the target, are the carrier 
frequencies, and  is the speed of light. The noise at the two 
carrier frequencies are assumed to be complex AWGN, and 
uncorrelated. Further, the noise sequences are i.i.d for each 
carrier frequency. The returns in eq. (1) can be statistically 
characterized by a multivariate complex Gaussian probability 
density function, 
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where the received signals at the two frequencies are 
appended to form a long vector,  
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The covariance matrix is Hermitian with the following 
diagonal structure  

                     (4) 
�
�
�

�

�
�
�

�
����

��

�

�

I0
0IC�x�x

ss�x 21

2
2

2
1}))({( 

][}{






NN

NNH

T

E

E

3. MAXIMUM LIKELIHOOD AND SUBOPTIMAL 
ESTIMATORS 

In this section, we enforce , i.e., the noise free 
returns are completely parameterized by a vector of p 
parameters,  For the problem at 
hand, the ML estimator of the complete parameter vector, 

 can be readily derived as 
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Equation (5) constitutes the ML estimator for the dual 
frequency radar, and does not have a closed form solution. 
We, therefore, employ the idea of step-wise concentration. It 
is noted that when the covariance matrix is known, the ML 
estimator for �  takes the form 
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Equation (6) calls for an iterative solution to eq. (5). The 
iterative ML algorithm is formulated as follows. 
1) Initialize with , where I  is the identity matrix of the 

same dimension as  
IC �

.C
2) Using eq. (6), obtain the estimates  of  1�̂ .�
3) Use  in eq. (5) to obtain noise variance estimates, 
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4) Construct the estimated covariance matrix  
� � NDiag ����� 1
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5) Recursively solve at the  iteration,  thk
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6) Stop after convergence or when an appropriate stopping 
criterion is satisfied. 

 The covariance matrix in step 4 and eq. (7) are not 
represented as estimates to stress the fact that step-wise 
concentration is employed. In other words, for every 
iteration, a quasi-ML objective is optimized. The iterative 

step-wise algorithm is definitely not new, and has been used 
in generalized linear models in statistical literature, and is 
often described as the iterative reweighted least squares 
(IRLS) [5].  
5.1. Micro-Doppler 
The MD arises due to vibrations of scatterers on the target or 
of the target itself, for example, a target undergoing simple 
harmonic motion. The vibrational MD is characterized by 
sinusoidal instantaneous frequency, and hence phase, and 
can, therefore, be parameterized by ],,,,[ ooo dR !"��   
where is the initial range of the target, d is the maximum 
displacement, 

oR

o"  is the vibrational frequency, and  o!  is its 
associated phase.  The time-varying range profile for this 
motion is given by [6] 
         1..1,0),cos();( ����� NnndRnR ooo !"�        (8) 

Substituting eq. (8) in eq. (1), we obtain the signal returns 
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  (9)                       
The returns in eq. (9) represent the classical sinusoidal FM 
signal. Using these signals in eq. (7) yields the IRLS-ML 
estimator for the MD motion profile. However, given that the 
signal vector s  can be decomposed into two terms, one 
containing  and the other being a function of the 
remaining parameters in  we obtain the IRLS-iterations as 
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   (10)            

Equation (10) can be simplified further by minimizing with 
respect to  in which case one obtains the well known 
weighted least squares solution,  
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The IRLS-ML estimate for the remaining parameters is 
obtained by minimizing the expression 
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Since the projection matrix satisfies , one can 
simplify eq. (12) to obtain 

H
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Equations (11) and (13) constitute the IRLS-ML estimates at 
the  iteration. The noise variance estimates at the  
iteration are then obtained using eq. (10). The estimate of 

 is dependent on the estimates of the other parameters, as 
evident from eqs. (11)-(13). The cost function is highly non-
linear and requires good initial estimates in order to 
guarantee convergence. This necessitates discussing 
suboptimal estimators for MD.                      

thk thk 1�

oR

We note that the Fourier spectrum of the return, 
in eq. (9) is not analytic, and consists of 

infinitely many harmonics weighted by Bessel functions of 
the first kind 
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where  is the order Bessel function. Since the 
Bessel functions rapidly decrease in magnitude for increasing 

, the Fourier transform in eq. (14) has at the most 

)(*mJ thm

m Mm �  
significant harmonics. With this in mind, we describe below 
the suboptimal estimation procedure. Since the noise 
variances are neither required for estimating the parameters 
suboptimally nor to start the IRLS iterations, their 
suboptimal estimates are omitted. 

To obtain initial estimate of o" , we choose MKm +�  
peaks of 2,1),( ��iX i "  and form the vectors,  
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In general,  since the noise in the signal returns is 
different for each carrier frequency. The suboptimal 
estimates 
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The suboptimal estimate of 
 is provided by employing 
the higher order statistics based technique of [7].  
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Assuming the signal returns are wideband, the suboptimal 
estimate for is reached using the estimator 
proposed in [8] as  
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where  denotes the Hadamard product. The estimates for 
 and 

''�
oR �  are given by 
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For ,o!  we use the LS estimator proposed in [7] after 
appropriately demodulating the estimates for  and oR .�   
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In eq. (20), )arg(*  is the unwrapped phase operator, and 
operates element-wise on a vector. We note that the 
suboptimal techniques for vibrational MD rely heavily on the 
peak picking in the Fourier transform and could suffer 
considerably for low signal-to-noise ratios (SNRs). This is 
further discussed in Section 4.   

It is important to note that we have two sets of 
suboptimal estimates for oo d !"   and ,, corresponding to the 
two carrier frequencies, whereas only one suboptimal 
estimate for  In step 2 of the IRLS, we only need a single 
suboptimal estimate of 

.oR

o"  for initialization. In the absence 
of any a priori information on the operating conditions, for 
example, the SNR at the two carriers, we can simply average 
the suboptimal estimates to obtain a single value. Likewise 
for .  and od !  It is further noted that the suboptimal estimates 
for , oR 
 , and �  are not required to launch the IRLS, as 
these parameters  are not involved in step 2  maximizations.   
 
4. SIMULATIONS AND EXPERIMENTAL RESULTS 
4.1. Simulations 
The carrier frequencies are set to 9031 �f MHz and 

9212 �f  MHz. The SNRs at the radar are defined as 
 We fix =10dB and vary  

from -10dB onwards, in 5dB increments. For simplicity, the 
phase parameter 

.2,1,/ 22 ��� iSNR ii 

 1SNR 2SNR

0��  is known, which makes the CRBs of 
range and velocity, derived in [8], decoupled from those of 
the other nuisance parameters.  

Figures 1(a)-(d) demonstrate the MSE for the IRLS, 
NLS, and the suboptimal estimation schemes. The number of 
Monte Carlo trials was 250, with . The number of 
data sample 

10max �k
,1024�N  and the parameters of the MD signal 

used were  .]3/,123.0,07.0,3.1[ T
ooo dR �!�" ������

The signal is wideband for the aforementioned carriers. In 
the suboptimal estimation scheme, we forced 
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1�� Km which makes  in eqs. (16), (18), and 
(20). This choice of 

,]1,0,1[ T��K
K  amounts to using only the first 

harmonic and DC for estimation.  The corresponding CRBs 
for both single frequency and dual frequency operations are 
also shown. The estimates are clearly below the dual 
frequency CRBs. The IRLS offers superior performance than 
the NLS for all parameters except  for which both the 
NLS and IRLS give identical MSE. 

oR

4.2. Experimental results 
The data used corresponds to a 12inch conducting sphere 
tied to the ceiling, and excited to oscillate in a simple 
harmonic fashion. Only the first seven seconds of data, 
comprising of 700 samples, is used in order to avoid damped 
oscillations. The carrier frequencies were 906.3 MHz, and 
919.6 MHz. Figure 2 shows the magnified versions of the 
spectrogram of the data overlaid on the IRLS, NLS, and 
suboptimal IF trajectories. Clearly, the IRLS yields better 
estimates compared to the NLS, and agrees with the IF of the 
data at both carriers. 

5. CONCLUSIONS 
In this paper, we considered a dual frequency Doppler radar 
for range estimation of moving targets with application to 
urban sensing. The ML estimator was derived for the micro-
Doppler motion profile. It was shown that the ML estimator, 
although not solvable in closed form, can be provided using  
a step-wise iterative algorithm termed as the IRLS. For 
 simulated data, the algorithm was shown to be superior in 
terms of the MSE when compared to suboptimal estimators. 
The iterative ML was also applied to real data generated 

from simple harmonic motion and corresponding to indoor 
oscillating targets. 
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