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ABSTRACT

The fitting of a number of noisy data points with a circle has
found numerous applications in image processing and pattern
recognition. This paper examines two methods to estimate
the circle parameters: theMaximumLikelihood (ML)method
and the Full-Least-Squares (FLS) method. The MLmethod is
based on the noisy model from the data while the FLS method
minimizes the geometric distance square. We first provide the
iterative solutions of them using Taylor-series linearization
approach. We then show analytically that FLS does not yield
the ML solution. This is in contrast to previous study that the
FLS method gives the same solution as ML. FLS method ap-
proximates theML estimation only if the noise power is much
less than the circle radius square. Simulations are included to
support the theoretical development.
Index Terms— Circle fitting, parameter estimation,

CRLB, maximum likelihood, full-least-squares.

1. INTRODUCTION

The problem of fitting a circle given a number of noisy mea-
surement points is a classical problem which remains to at-
tract research interests over the past two decade. Circle fitting
is essentially the estimation of the circle center and radius
from the measurements. Unlike line fitting, circle fitting is
a non-linear estimation problem subject to bias and thresh-
olding behavior. The interest in circle fitting comes from its
wide variety of applications in image processing and pattern
recognition [1].
Associated with an estimation problem is the lower bound

on the mean-square error (MSE) of parameter estimates. The
evaluation of the Cramér-Rao Lower Bound (CRLB) on this
circle fitting estimation has been given in [2] and [3]. Many
methods have been proposed for this interesting problem and
a good summary of them is in [4]. The full-least-squares
(FLS) method is able to achieve the CRLB performance. It is,
however, iterative and numerical solution is needed. The av-
erage of intersections (AI) method, the reduced least-squares
(RLS) method and the modified least-squares (MLS) method
yield closed-form solutions. Their performance, on the other
hand, is not able to reach the CRLB accuracy. The well-
knownKȧsa’s method is shown to give a closed-form solution

and has CRLB accuracy if the noise level tends to zero. More
recently, branch and bound method [5] is proposed for the
purpose to obtain maximum likelihood (ML) estimator and
its performance is close to the the Kȧsa’s method.
This paper focuses on (i) a new implementation of the ML

estimator through the Taylor-series linearization technique,
and (ii) the comparison between the ML estimator and the
FLS method. Our theoretical investigation indicates that the
FLS method is not the ML estimator. This is in contrast to the
previous study [6] that the FLSmethod gives theML solution.
We have shown that the FLS method approximates the ML
estimator only when the noise power of the measurements is
much smaller than the radius square of the circle. Hence, ML
solution outperforms FLS method where the noise power is
large or when the circle radius is small. The theoretical study
is supported by simulations.
Throughout this paper, bold-face lower case letter denotes

column vector and bold-face upper case letter represents ma-
trix. If (∗) is a noisy quantity, (∗)o stands for the true value
of (∗) without noise.

2. THE CIRCLE FITTING PROBLEM
Let si = [xi, yi]T , i = 1, 2, · · · , N , be a set of N measure-
ment points defined as

si = so
i + ni (1)

where so
i = [xo

i , y
o
i ]

T is the true data point sampled from
a circle of center co = [xo, yo]T and radius ro such that it
satisfies ‖so

i − co‖ = ro (2)
and ‖ ∗ ‖ is the Euclidean norm. ni is the measurement noise
and is modeled as zero mean Guassian with diagonal covari-
ance matrix σ2I2×2. It is further assumed that ni is I.I.D. for
i = 1, 2, · · · , N . Given the noisy measurements si, we are
interested to find an estimate of θo = [coT , ro]T that best fits
the measurements in some optimal sense.

3. THE ML SOLUTION
Since ni ∼ N(0, σ2I2×2), the ML cost function is simply
equal to

J(θ) =
N∑

i=1

‖si − so
i (θ)‖2 (3)
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and the ML solution is the value of θ that minimizes J(θ).
The ML cost function is not quadratic with respect to θ be-
cause so

i (θ) is related to θ in a highly nonlinear manner. We
shall propose the use of Taylor-series linearization approach
to minimize J(θ) through iteration.
Let θ(o) = [x(o), y(o), r(o)]T be an initial solution guess.

Expanding so(θ) through Taylor-series up to linear term gives

so
i (θ) = so

i (θ(o)) + Gi(θ(o))(θ − θ(o)) (4)

where Gi(θ(o)) = ∂so
i (θ)

∂θ

∣∣∣
θ(o)

is the 2 × 3 gradient matrix.

Putting (4) into (3) forms

J(θ) �
N∑

i=1

‖si − so
i (θ(o)) − Gi(θ(o))(θ − θ(o))‖2 (5)

(5) is quadratic with respect to θ, whose minimum is achieved
when

θ = θ(o)+
[ N∑

i=1

Gi(θ(o))TGi(θ(o))
]−1

·

[ N∑
i=1

Gi(θ(o))T
(
si − so

i (θ(o))
)] (6)

To improve the solution, we set θ(o) to the answer from (6)
and repeat the computation. Indeed, the proposed solution
can be easily expressed as

θ(k+1) = θ(k)+
[ N∑

i=1

Gi(θ(k))TGi(θ(k))
]−1

·

[ N∑
i=1

Gi(θ(k))T
(
si − so

i (θ(k))
)] (7)

for k = 0, 1, · · · , where k is the iteration count. The itera-
tion stops when ‖θ(k+1) - θ(k)‖ < δ, where δ is some small
number.
We now determine so

i (θ(k)) andGi(θ(k)) to complete the
iterative solution. Using Chan & Thomas [2] parametric form
of circle representation, a point (xo

i , y
o
i ) on a circle can be

expressed as

xo
i = xo + ro cos(φo

i )
yo

i = yo + ro sin(φo
i )

(8)

whereφo
i = tan−1 yo

i −yo

xo
i −xo . Thus, givenθ(k) = [x(k), y(k), r(k)]T ,

so
i (θ(k)) =

[
x(k)

y(k)

]
+ r(k)

[
cos(φi)
sin(φi)

]

φi = tan−1 yi − y

xi − x

(9)

Note that we have replaced (xo
i , y

o
i ) by (xi, yi) in obtaining

φi because (xo
i , y

o
i ) is not available.

The gradient matrixGi(θ(k)) is

∂so
i (θ)
∂θ

∣∣∣∣∣
θ(k)

=

[
∂xo

i

∂x
∂xo

i

∂y
∂xo

i

∂r
∂yo

i

∂x
∂yo

i

∂y
∂yo

i

∂r

] ∣∣∣∣∣
θ(k)

(10)

whose elements are [2], after replacing (xo
i , y

o
i ) by (xi, yi)

because (xo
i , y

o
i ) is not known,

∂xo
i

∂x

∣∣∣∣∣
θ(k)

=
(xi − x(k))2

r2
(k)

,
∂xo

i

∂y

∣∣∣∣∣
θ(k)

=
(xi − x(k))(yi − y(k))

r2
(k)

∂yo
i

∂y

∣∣∣∣∣
θ(k)

=
(yi − y(k))2

r2
(k)

,
∂yo

i

∂x

∣∣∣∣∣
θ(k)

=
(xi − x(k))(yi − y(k))

r2
(k)

∂xo
i

∂r

∣∣∣∣∣
θ(k)

=
xi − x(k)

r(k)
,

∂yo
i

∂r

∣∣∣∣∣
θ(k)

=
yi − y(k)

r(k)

(11)

(7) together with (9)-(11) forms the ML iterative solution.
The ML solution presented here uses only the linear term

in the Taylor series expansion. Including the second order
term may improve performance, especially in reducing the
sensitivity in initialization. This is a subject for further study.

4. THE FLS SOLUTION

The cost function of FLS is [4]

F =
N∑

i=1

(r − ‖si − c‖)2 (12)

The solution θ = [cT , r]T is found by minimizing F . F is re-
lated to θ in a complicated manner and iterative minimization
is needed. Following the same approach as in the previous
section through Taylor-series linearization, the FLS solution
through iteration is

θ(k+1) = θ(k)+
[ N∑

i=1

Hi(θ(k))THi(θ(k))
]−1

·

[ N∑
i=1

Hi(θ(k))T
(
r(k) − ‖si − c(k)‖

)]
(13)

for k = 0, 1, · · · , where θ(o) = [cT
(o), r(o)]T is some initial

guess. The iteration stops when ‖θ(k+1) - θ(k)‖ < δ, where δ
is a small value. The gradient matrixHi(θ(k)) is

Hi(θ(k)) =
[(

si−c(k)

‖si−c(k)‖
)T

1

]
.

(14)
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5. COMPARISON

Let us now compare ML and FLS. We begin with the FLS
cost function in (12). Expanding the square gives

(r − ‖si − c‖)2 = r2 + ‖si − c‖2 − 2r‖si − c‖. (15)

Let so
i (θ) be a point on the circle defined by θ. Then

r2 = ‖so
i (θ) − c‖2 (16)

we can express ‖si − c‖2 as

‖si − c‖2 = ‖so
i (θ) − c + si − so

i (θ)‖2

= r2
[
1 +

‖si − so
i (θ)‖2

r2
+

2
r2

(so
i (θ) − c)T (si − so

i (θ))
] (17)

If r is large compared to ‖si − so
i (θ)‖ so that

‖si − so
i (θ)‖/r � 1, then from (17),

‖si − c‖ � r
[
1 +

1
r2

(
so
i (θ) − c

)T (
si − so

i (θ)
)]

(18)

Putting (17)-(18) into (15) yields immediately

(r − ‖si − c‖)2 � ‖si − so
i (θ)‖2 (19)

so that (12) becomes

F �
N∑

i=1

‖si − so
i (θ)‖2 (20)

which is the ML cost function in (3).
We can now conclude that in general FLS is not the same

as ML estimator. It approaches the ML estimator if

εi =
‖si − so

i (θ)‖
r

� 1. (21)

This condition is satisfied if the noise level in the data mea-
surements is small, or when r is big. Thus, we expect that
the ML solution will outperforms the FLS method when the
noise level is high or when the radius of the circle is small.
A previous work [6] shows that FLS gives the ML so-

lution. The derivation there, however, was based on the as-
sumption that c and φi are independent variables to simplify
the development. This is obviously not the case as can be in-
ferred from (8). The comparison result here does not make
this assumption and the simulation presented next confirms
our results.

6. SIMULATION
We shall investigate the performance of the proposed ML so-
lution and the FLS method via simulation and compare their
performance with respect to the optimum accuracy of the
problem, the CRLB. TheN true data points are sampled from
an arc of a circle with radius r and central angle β. The center
of the circle is set to be (80, 60)m. The noisy measurements

are generated by adding to the true data points zero mean
Gaussian white noise with covariance matrix σ2I2N×2N .
The estimation accuracy is defined as MSE(θ)=

∑L
l=1‖θl

− θo‖2/L. where θl is the estimated unknown vector at
ensemble l and L = 10000 is the number of ensemble runs.
Fig. 1 shows the results when N = 5, r = 10m and

β = π/3. The MSEs of ML and FLS methods, together
with the CRLB are shown as function of noise power σ2.
When σ2 is less than or equals to −25dB, both methods can
achieve the CRLB accuracy, which is an expected result be-
cause the ML estimator is asymptotically efficient. After σ2

reaches−20dB, the performance of FLS method suffers from
the threshold effect, while the ML estimator remains to gener-
ate seasonable estimates of θo. This observation is consistent
with our theoretical analysis in section 5 that for large noise
power, the ML solution will outperform the FLS method.
Fig. 2 gives the results when N = 5, r = 10m and

β = 2π. The trend observed is similar as in Fig. 1. The
MSEs of both methods are smaller because the data points
are distributed from the whole circle instead of clustering on
a small arc.
Fig. 3 depicts the averaged fitted circles from five noisy

measurement points. Simulation configuration is the same as
in Fig. 2 except that σ2 is fixed at 3dB. We can see the circle
estimated by ML solution is very close to the true one while
the FLS circle significantly deviates from the true one. This
again verifies the theoretical development that FLS method
would not behavior as an ML estimator when the noise power
becomes large.
Fig. 4 illustrated the MSEs of ML and FLS method when

N = 20, r = 10m and β = 2π. The figure indicates that both
ML and FLS have lower estimation MSE as M increases.
Both methods deviating gradually from the CRLB when σ 2

is larger than 0dB but no threshold effect occurs.
In generating Fig. 5, the parameters are N = 20, r =

2m and β = 2π. It is evident that when the radius of the
circle decreases, the ML estimator gives much better result
than the FLS method after σ2 reaches 0dB. This observation
verifies the result in (21) that only when the ratio between
noise power and circle radius square is much less than unity,
the FLS approximates the ML estimator.

7. CONCLUSION

This paper derives the ML solution for circle fitting using
Taylor-series linearization approach, where the noise in the
data measurements are Gaussian and white. It then provides
a comparison in performance between the ML estimator and
the FLS method. Unlike the result from a previous work that
illustrates FLS gives the ML solution, we have shown analyt-
ically that FLS does not give ML estimation. It approximates
the ML estimator if the ratio between noise power and cir-
cle radius square is much less than unity. Otherwise the ML
estimator gives much better results. Simulations confirm the
theoretical findings.
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Fig. 1. Performance comparison of the ML and FLS method
whenN = 5, r = 10m and β = π/3.
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Fig. 2. Performance comparison of the ML and FLS method
whenN = 5, r = 10m and β = 2π.
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Fig. 3. Averaged fitted circles of the ML and FLS method
whenN = 5, r = 10m, β = 2π and σ2 = 3dB.

−40 −30 −20 −10 0 10
−50

−40

−30

−20

−10

0

10

10log(noise power)

10
lo

g(
M

S
E

)

CRLB
ML
FLS

Fig. 4. Performance comparison of the ML and FLS method
whenN = 20, r = 10m and β = 2π.
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Fig. 5. Performance comparison of the ML and FLS method
whenN = 20, r = 2m and β = 2π.
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