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ABSTRACT

Recently there has developed considerable interest in using sparse-
ness with PCA. Almost all previous methods concentrate on zeroing
out some loadings. Here we develop a new approach which zeros out
whole variables automatically. We formulate a vector l1 penalized
PCA criterion and optimize it by steepest descent along geodesic on
a Grassman manifold. This ensures that each step obeys PCA or-
thogonality as well as an invariance property of the criterion. We
show in simulations that it outperforms a previous svPCA algorithm
and apply it to a real high dimensional functional Magnetic Reso-
nance Imaging (fMRI) data.

Index Terms— Principal component analysis, fMRI, Optimiza-
tion on a manifold.

1. INTRODUCTION

Principal Component Analysis (PCA) is useful for analyzing large
data sets that, e.g., arise in applications involving functional Mag-
netic Resonance Imaging (fMRI) data. Given T observations onM
variables, PCA expresses the data in terms of new uncorrelated vari-
ables named principal components. The first Principal Component
(PC) is the linear combination of the data variables that maximizes
the variance. The second PCs is orthogonal to the first while max-
imizing the variance etc. Often the variability of the data can be
captured into few PCs leading to substantial data reduction.

A typical high dimensional data set consists of a relatively few
observations on very many variables. For instance, fMRI data con-
sists of time series of brain images where the number of observations
is on the order of hundreds while the number of volume elements
(voxels) or variables is typically on the order of thousands. In this
application, some of the variables only represent noise and should
be kept out of the analyzes. The purpose of this paper is to develop
a PCA method that automatically zeros out irrelevant variables.

We identify two kinds of methods that use sparseness in connec-
tion with PCA. Firstly, sparse loading PCA (slPCA) where all vari-
ables are retained but each variable may have some of its loading
zeroed out. Examples of slPCA are given in [1, 2, 3, 4]. Secondly,
sparse variable PCA (svPCA) where whole variables are removed by
simultaneously zeroing out all their loadings. Note that slPCA and
svPCA thus aim to solve totally different problems. Previously, [5],
Johnstone and Lu suggested a simple svPCA algorithm that thresh-
olds low variance variables followed by using a conventional PCA
on the rest of the variables. In our previous work [6, 7], an svPCA al-
gorithm called svnPCA based on a penalized likelihood formulation
was described. It relies on Lawley’s [8, 9] stochastic model for PCA.
This optimization was carried out on a Stiefel manifold. These two
methods are really aimed at doing totally different things; slPCA is
probably best suited to small data problems and svPCA to large data
problems. In addition to the slPCA and svPCA methods described

above, we mention that [10] develops a sparse PCA method based
on rotating PCs, and [11] develops a sparse kernel PCA method.

In this paper we introduce an svPCAmethod based on solving an
orthogonality constrained optimization problem. The cost function
possesses a vector l1 penalty that can produce sparseness and has
symmetry that allows for optimization on the Grassman manifold.
We propose to use the steepest descent algorithm on the Grassman
manifold to solve the optimization problem.

Following introduction in Section 1, we review PCA in Section
2. Section 3 introduces the new svPCA method. Section 4 discusses
how we estimate the svPCs, and Section 5 covers the associated tun-
ing parameter selection. In Section 6 the svPCA method is applied
to a simulated data set and a real fMRI data set. Finally, in Section
7, conclusions are drawn.

2. PRINCIPAL COMPONENT ANALYSIS

Let us assume the data consists of T observations on M variables
and is contained in a T×M matrix Y = [yT

t ] = [y(v)]. Furthermore,
assume throughout the paper that the data is mean centered. The PCs
are defined as zt = P T yt, t = 1, ..., T where P is the M × M
eigenvector matrix of the data covariance Sy = 1

T

PT
t=1 yty

T
t .

These eigenvectors can be efficiently computed via the Singular
Value Decomposition (SVD) of the data 1√

T
Y = QL1/2P T where

Q is T × T orthonormal matrix, P isM × M orthonormal matrix,
and L is T × M diagonal matrix of singular values.

PCA is posed [12] as the solution to the following problem

minimize J(F ) = − 1
2
tr(F T SyF )

subject to F T F = Ir
(1)

The optimalM × r matrix F is the r first columns of the eigenma-
trix P . The optimal value of (1) is J(F ) = − 1

2

Pr
j=1 lr . In the

following we penalize (1) to encourage a sparse variable property.

3. SPARSE VARIABLE PCA

svPCA is defined as the following penalized optimization problem

minimize J(F ) = − 1
2c
tr(F T SyF ) + h

M
ρ(F )

subject to F T F = Ir

where c = tr(Sy). Before we specify the penalty let us consider
what needs to be done to zero out whole variable v. Typically, the
data can be represented by few PCs. This means that a variable v can
be written as y(v) ≈ Zfv where Z is a T × r matrix of the PCs and
fv is the v-th row vector of F . The variable yv is zeroed out when
fv = 0. Therefore the penalty should be designed to do that.
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3.1. The penalty function

As in [6, 7] we propose to use the vector l1 penalty ρ(F ) =PM
v=1 ‖fv‖2 where ‖fv‖2 =

qPr
j=1 f2

v,j . Since this penalty
has discontinuous derivative (only) for fv = 0 it can produce zero-
ing of fv . However, note that the penalties

PM
v=1 ‖fv‖p for p > 2

can also provide zeroing. But since 1) p = 2 provides rotational
invariance, which is a property which will be useful in the estimation
section below, and 2) p = 2 is the strongest penalty for all p ≥ 2,
we pick p = 2. Interestingly, the special case of p = 1 also provides
sparseness, but it does not simultaneously zero out all elements of
fv . Actually, p = 1 leads to slPCA.

In a very different context this kind of penalty has been indepen-
dently introduced under the name of group Lasso [13]. This kind of
penalty is also long known in total variation denoising, but there it is
used to regularize derivatives not amplitudes.

Our estimation strategy requires the cost function to be smoothly
differentiable which is not the case since the derivative of ρ(F ) is
discontinuous at zero. We use a standard trick [14] and approximate
the non-smooth penalty with a smooth one:

ργ(F ) =

MX
v=1

q
‖fv‖2

2 + γ2

where γ is a small constant. Therefore the svPCA problem consists
of solving the following optimization problem:

min J(F ) = − 1
2c
tr(F T SyF ) + h

M

PM
v=1

p
‖fv‖2

2 + γ2

s.t F T F = Ir.
(2)

4. OPTIMIZATION BY A GEODESIC STEEPEST
DESCENT ON A GRASSMANMANIFOLD

The optimization problem (2) has no closed form solution except for
the special case of h = 0, i.e., the PCA problem. Therefore we
need to resort to iterative algorithms. A traditional iterative method
to solve optimization problems is the steepest descent algorithm. In
that method the solution is updated at each step by moving it in the
direction of the negative gradient. However in our case this approach
does not work since we require the solution to satisfy the orthogo-
nality constraints F T F = Ir and at each step the update would step
off the constraint surface.

Luenberger [15] pioneered a general approach to apply steep-
est descent to constrained optimization problems or optimization on
manifolds. Instead of moving in straight line in the direction of the
negative gradient we move along a geodesic on the constraint sur-
face, i.e., satisfy the constraint in each step. A general form of a
geodesic steepest descent algorithm is the following:

Geodesic steepest descent algorithm
i. Compute the geodesic F (θ) emanating from the negative gradient

−∇J .
ii. Compute the θ∗ that minimizes J(F (θ))

iii. Update F = F (θ∗), if not converged return to step i.

This kind of geodesic steepest gradient is, in general, not prac-
tical due to a high computation cost. A system of linear differential
equations (Euler-Lagrange equations) has to be solved in ii. In this
paper we have orthogonality constraints which were treated in gen-
eral in [16]. In that case the computation of the geodesic in i. is
relatively quick and simple.

4.1. Stiefel and Grassman manifolds

The orthogonality constraint F T F = Ir defines a Stiefel manifold
[17]. So the optimization is at least on a Stiefel manifold. However
unlike the criterion in [7] our new criterion possesses the additional
homogeneity condition J(FQ) = J(F ) where Q is an arbitrary
r × r unitary matrix.In this case the constraint surface is called the
Grassman manifold.

4.2. Grassman gradient

The Grassman gradient ∇J is the projection of the (unconstrained)
gradient JF onto the tangent plane at F [16]:

∇J = (IM − FF T )JF (3)

where JF = − 1
c
SyF + h

M
DF and

D = diag((‖f1‖2 + γ2)−1/2, ..., (‖fM‖2 + γ2)−1/2).

4.3. Grassman geodesic

A smooth curve F (θ), 0 ≤ θ ≤ N starting at F (0) and terminating
at F (N)minimizing the path length between the two points is called
a geodesic. The Grassman geodesic F (θ) starting at F emanating
from −∇J is given by [16]

F (θ) = (FV cos(Σθ) + U sin(Σθ))V T

where UΣV T is the compact SVD of the negative Grassman gradi-
ent −∇J .

4.4. Normalized Grassman gradient

Let s be the path length along the geodesic from the initial point F
to F (θ), it can be shown that s = θ‖∇J‖ where ‖A‖ = tr(AT A).
Thus we can normalize the geodesic by re-parameterizing it in terms
of the path length by writing θ = s/‖∇J‖. This normalization helps
in the line search below.

4.5. Grassman-steepest descent svPCA algorithm

The Grassman svPCA (GsvPCA) algorithm is by:

i. Initialize: Set F0 = P where Y/
√

T = QL1/2P T .

ii. Grassman gradient : Compute ∇Jk using (3).

iii. Stop Condition : Terminate the algorithm if ‖∇Jk+1‖
‖∇J0‖ ≤ δ.

iv. Line search : Compute the path length s∗ that minimizes
J(F (s)) where F (s) is the Grassman geodesic parame-
terized by path length.

v. Update : Update the solution to Fk+1 = F (s∗). Go to step ii.

A little experimentation is needed in practice to select the tolerance
parameter δ. An interesting idea is to let γ → 0 in the gradient ∇J .
This seems to work in practice, but proving convergence is difficult
and is left for future work.

5. TUNING PARAMETER SELECTION

The svPCA cost function depends on two tuning parameters; the
number of svPCs and the sparseness parameter h. A traditional way
to select tuning parameters is cross-validation. However, for large
data sets it is unfeasible due to high computation cost. We suggest
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the following Cost-Complexity (CC) criterion to select the tuning
parameters:

CCh,r =
M

2
log(σ̂2) +

1

2T
d log(T )

where d = Mhr − r(r − 1)/2 is the number of free parame-
ters to be fitted, Mh is the number of non-zero variables, σ̂2 =
1
T

PT
t=1 ‖yt − μt‖2 and μt = FF T yt . The local minimums of

the criterion are inspected and h and r are selected accordingly. Be-
cause our criterion is not based on a stochastic model we cannot
apply traditional criteria such as BIC. However our adhoc criterion
has the traditional form of residual sum of squares plus a BIC-like
complexity penalty. It seems to behave well as long as T, M are not
of similar size. Development of a more formally justified procedure
is a non-trivial task and will be pursued elsewhere.

6. RESULTS

6.1. Simulation

We simulated a T = 100 timesM = 1024 data matrix Y = [yT
t ] =

[y(v)] where we think of the row vector yt as a 32 × 32 image sam-
pled at a time instance t. The data was constructed as follows:

yt,v =
50

6
√

50
cos(

8π

T
t) + εt,v, t = 0, ..., T − 1, v ∈ A1

yt,v =
25

6
√

50
cos(

8π

T
t) +

√
0.6εt,v, t = 0, ..., T − 1, v ∈ A2

yt,v =
40

6
√

50
sin(

8π

T
t) + εt,v, t = 0, ..., T − 1, v ∈ A3

yt,v = εt,v, t = 0, ..., T − 1, v ∈ A4

where εt,v ∼ N(0, 1) and the regions A1, A2, A3 and A4 are de-
fined in Fig. 1 Left (Region A4 are the pixels outside the white
rectangles). The time series in region A1 and A2 are highly corre-
lated. The time series in region A3 have very low correlation with
the rest. Fig. 1. Right shows time instances y33 of the data showing
that the signal to noise ratio is rather low.
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Fig. 1. Left: Regions A1, A2 and A3 defined. Region A4 is outside
the white rectangles. Right: Noisy data samples y33.

Fig. 2 shows the CC statistic. Based on the minimum of the
CC statistics h = 2 and r = 2 are selected for the GsvPCA algo-
rithm corresponding to CC = 3543. Fig. 3 show the columns of
the GsvPC estimate F showing that the method detected signals cor-
rectly in all regions. We compare this result with the simple thresh-
olding svPCA algorithm (JLsvPCA) in [5]:

JLsvPCA algorithm

i. Compute sample variances σ2
v = 1

T

PT
t=1(yt,v − ȳv)

2, v =
1, ..., M where ȳv, v = 1, ..., M are the sample means.
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Fig. 2. CC statistics for the simulation. Left: 2 dimensional CC plot.
Right: r = 2 CC profile.
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Fig. 3. Loadings from the GsvPCA algorithm. Left: First column of
F . Right: Second column of F .

ii. Order the sample variances: σ2
(1) > σ2

(2) > ... > σ2
(M).

iii. Keep the variables corresponding to theMh largest sample vari-
ances and zero out the rest.

iv. Compute traditional PCA (Section 2) on the reduced data set.

Actually, in [5] the JLsvPCA was performed in the wavelet domain.
But since we are interested in sparsity in the spatial domain (not
wavelet domain) we do not wavelet transform the data.

The CC statistic was used to select the tuning parameters for the
tsvPCA algorithm which are the number of PCs r and the number of
non-zero pixels Mh. The CC statistic took minimum at (Mh, r) =
(97, 2) with value CC = 3545 which is higher than for our svPCA
algorithm. Fig. 4 displays the JLsvPC loadings. There are more
noisy pixels than for GsvPCA and the algorithm missed region A2

completely.
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Fig. 4. Loadings from the JLsvPCA algorithm. Left: First column
of F . Right: Second column of F .

6.2. GsvPCA vs svnPCA from [7]

Formally comparing GsvPCA is difficult since svnPCA is model
based but GsvPCA is not. However, our experiments suggest that
the results in practice are similar. But GsvPCA is faster since it is
based on optimization on a Grassman manifold instead of the Stiefel
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optimization needed for svnPCA. In addition, svnPCA has an addi-
tional cyclic descent step which GsvPCA has not.

6.3. Real Data

In this section, we apply svPCA on real fMRI data [18] coming from
a motor/visual experiment. We analyze a brain slice that includes
the visual cortex. The data consists ofM = 1122 volume elements
(voxels) sampled over time with sampling period of 2 seconds. There
are T = 100 time points in the data set. Fig. 5 shows brain image
y50 (the mean has not been removed). The CC statistic is depicted
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Fig. 5. Brain image y50

on Fig. 6. After inspection of local minimums r = 8 and h = 3.43
was selected.
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Fig. 6. CC statistics for the real fMRI data. Left: 2 dimensional CC
plot. Right: r = 8 CC profile.

Fig. 7 shows spatial map number 2 (column 2 of F ) and com-
pares it to spatial map number 2 from traditional PCA (h = 0). We
clearly see that the svPC map is much sparser.

cm

cm

−10 −5 0 5 10

−10

−5

0

5

10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

cm

cm

−10 −5 0 5 10

−10

−5

0

5

10 −0.15

−0.1

−0.05

0

0.05

0.1

0.15

Fig. 7. Left: GsvPCA activation map 2. Right: PCA (h = 0)
activation map 2.

7. CONCLUSIONS

In this paper we have developed a new sparse variable PCA algo-
rithm. It is based on a geodesic steepest descent optimization of a
vector l1 penalized PCA criterion on a Grassman manifold. We also

developed an ad-hoc model selection criterion for choosing jointly
the number of principal components and the penalty parameter. The
algorithm was demonstrated in a simulation to outperform the pre-
vious svPCA algorithm of [5]. In addition it was shown to perform
well for real high dimensional fMRI data.
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