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ABSTRACT

The batch least-absolute shrinkage and selection operator (Lasso)
has well-documented merits for estimating sparse signals of inter-
est emerging in various applications, where observations adhere to
parsimonious linear regression models. To cope with linearly grow-
ing complexity and memory requirements that batch Lasso estima-
tors face when processing observations sequentially, the present pa-
per develops a recursive Lasso algorithm that can also track slowly-
varying sparse signals of interest. Performance analysis reveals that
recursive Lasso can either estimate consistently the sparse signal’s
support or its nonzero entries, but not both. This motivates the
development of a weighted version of the recursive Lasso scheme
with weights obtained from the recursive least-squares (RLS) algo-
rithm. The resultant RLS-weighted Lasso algorithm provably esti-
mates sparse signals consistently. Simulated tests compare compet-
ing alternatives and corroborate the performance of the novel algo-
rithms in estimating time-invariant and tracking slow-varying signals
under sparsity constraints.

Index Terms— Lasso, Variable Selection, Sparsity, Tracking.

1. INTRODUCTION

Sparsity is a feature present in a plethora of natural as well as man-
made signals and systems. This is reasonable not only because na-
ture itself is parsimonious but also because simple models and pro-
cessing with minimal degrees of freedom are attractive from an im-
plementation perspective. Exploitation of sparsity is critical in ap-
plications as diverse as variable selection in linear regression mod-
els for diabetes [9], image compression [4], and distributed spec-
trum sensing for cognitive radios [2]. To name a few, sparsity-aware
signal estimators include the basis pursuit and Lasso operators, the
Dantzig selector and recent ones that appeared with the emerging
area of compressive sampling; see [9, 5, 4] and references therein.

The aforementioned estimators entail the �1 norm of the signal
of interest and are nonlinear functions of the available observations,
which they process in a batch form using iterative linear program-
ming solvers. Recently, recovery of noise-free sparse signals from
linear projections taken one at a time until perfect reconstruction,
was studied in [8] along with optimal stopping rules and pertinent
implementation issues. Many sparse signals encountered in practice
however, have to be estimated based on noisy observations that be-
come available sequentially in time. For such cases, batch signal
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estimators typically incur complexity and memory requirements that
grow as time progresses. In addition, the sparse signal may vary
with time both in its nonzero support set as well as in the values of
its nonzero entries.

To cope with these challenges, the present paper develops adap-
tive algorithms for recursive estimation and tracking of (possibly
time-varying) sparse signals based on noisy sequential observations
adhering to a linear regression model. The novel schemes outlined
in Sections 3 and 4 are termed recursive (R) Lasso and recursive
least-squares (RLS) weighted Lasso because they constitute online
counterparts of the batch Lasso [9] and the weighted Lasso [11], re-
spectively. When the signal of interest is time-invariant, the perfor-
mance of R-Lasso and RLS-weighted Lasso is analyzed in Section
4 to assess consistency in estimating the support set as well as the
values of the nonzero sparse signal entries. These performance re-
sults in the recursive regime complement rather nicely those derived
in [10, 11, 12] for batch estimators of sparse signals. Corroborat-
ing simulations are presented in Section 5 both for time-invariant
and time-varying sparse signals, where comparisons are also drawn
among R-Lasso, RLS-weighted Lasso, sparsity-unaware recursive
as well as sparsity-aware batch estimators. Conclusions are drawn
in Section 6.

2. PRELIMINARIES AND PROBLEM STATEMENT

An N × 1 vector x is called sparse if only a few of its entries
{xn}N

n=1 are nonzero. Upon defining the nonzero support set of
x as supp(x) :=

{
n ∈ {1, . . . , N} : xn �= 0

}
, sparsity amounts to

having |supp(x)| � N , where | · | denotes set cardinality. Suppose
that such a sparse signal vector x is to be obtained sequentially from
K × 1 vector observations {yτ}t

τ=1. These observations obey the
linear regression model

yτ = Hτx + nτ , τ = 1, 2 . . . , t (1)

where {Hτ}t
τ=1 are known K × N regression matrices, and the

noise vectors {nτ}t
τ=1 are assumed zero mean and uncorrelated

across time, each with known covariance matrix σ2IK .
Given {yτ ,Hτ}t

τ=1 and σ2, a batch approach to estimating the
sparse x is provided by the least-absolute shrinkage and selection
operator (Lasso) [9] – a method also known in the signal processing
community as basis pursuit denoising [5]. This approach can be
readily applied to the concatenated model yt = Htx + nt, with
yt := [yT

1 , . . . ,yT
t ]T and Ht := [HT

1 , . . . ,HT
t ]T (T stands for

transpose). The batch Lasso estimates the wanted sparse vector as

x̂t = arg min
x

[
1

2
‖yt − Htx‖2

2 + λt‖x‖1

]
(2)
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where the �2 norm in the objective function denotes the ordinary
least-squares (OLS) cost; the �1 norm ‖x‖1 :=

∑N
n=1 |xn| effects

the sparsity constraint; and λt is a penalty parameter which can be
tuned to trade off the OLS error for the number of the nonzero entries
(degree of sparsity) in the estimate [9, 5].

Albeit non-differentiable, the Lasso objective is convex in x, and
can be optimized using linear programming techniques [3]. Obtain-
ing the global optimum in (2) is thus, in principle, tractable. Unfor-
tunately, the size of yt andHt grows linearly with t in the sequen-
tial setup considered here. As a result, batch Lasso solvers that incur
complexity in the order ofO (KtN min(Kt, N)) per time instant t,
soon become prohibitive both in terms of computational complexity
as well as in memory requirements. Additional challenges emerge
when sparse signal vectors in practice exhibit slow variations both
in their nonzero support set as well as in the values of their nonzero
entries, as time t progresses.

In response to these challenges, the goal of this paper is to
develop sequential and adaptive Lasso estimators with manage-
able complexity and memory requirements that are also capable of
tracking slow variations in the sparse vector of interest x.

3. RECURSIVE LASSO

If the sparsity constraint is not present, the goal of adaptive esti-
mation and tracking slow-varying signals adhering to a linear re-
gression model can be accomplished by the well known recursive
least-squares (RLS) algorithm [7, Chap. 8]. RLS yields online the
estimate

x̂
RLS
t = arg min

x

t∑
τ=1

βt−τ‖yτ − Hτx‖2
2 (3)

where β ∈ (0, 1] is the forgetting factor chosen to window the data
employed in forming the estimator, and thus strike a balance be-
tween controlling convergence (to the true x when the latter is time-
invariant) and the ability to track slow variations in x. (Recall that
when x is time-invariant, choosing β = 1 can render RLS equivalent
to the batch OLS.)

Motivated by RLS, consider decomposing the Lasso cost in (2)
and including the forgetting factor to obtain

Jt(x) =
1

2

t∑
τ=1

βt−τ‖yτ − Hτx‖2
2 + λt‖x‖1 . (4)

A recursive Lasso algorithm (referred as R-Lasso) can then be sought
to find iteratively the estimate x̂R−Lasso

t = arg minx Jt(x). To this
end, one can rewrite (4) as Jt(x) = (at + xT Rtx − 2xT rt)/2 +
λt‖x‖1, where at :=

∑t
τ=1 βt−τyT

τ yτ , rt :=
∑t

τ=1 βt−τHT
τ yτ

and Rt :=
∑t

τ=1 βt−τHT
τ Hτ . Again similar to RLS, these quan-

tities can be updated recursively using the iterations

rt = βrt−1 + H
T
t yt

Rt = βRt−1 + H
T
t Ht . (5)

Different from RLS however, gradient-based minimization of Jt(x)
is impossible because the �1 norm is non-differentiable. A possible
bypass in such cases is offered by subgradient-based iterative mini-
mizers [3, p. 620]. In the present context, the subgradient vector has

nth entry given by1

{∇̌Jt(x)}n =

⎧⎪⎨
⎪⎩
{∇Lt(x)}n + λtsign(xn), if xn �= 0
{∇Lt(x)}n − λt, if xn = 0,{∇Lt(x)}n > λt

{∇Lt(x)}n + λt, if xn = 0,{∇Lt(x)}n < −λt

0, if xn = 0,−λt < {∇Lt(x)}n < λt

where Lt(x) := (xT Rtx − 2xT rt)/2 is the differentiable OLS
cost with gradient ∇Lt(x) = Rtx − rt. In practice, the condition
xn = 0 in the subgradient is replaced by |xn| < δ � 1, where δ is
a prescribed constant.

Since (5) enables online updating of ∇Lt (and thus of ∇̌Jt), it
follows readily that the subgradient iterates (indexed by i)

x
(i+1)
t = x

(i)
t − αi∇̌Jt(x

(i)
t ) (7)

can be recursively updated at affordable complexity which does
not increase as time t progresses. A vanishing stepsize of the form
αi = α/

√
i or αi = α/i guarantees convergence (as i → ∞) to the

global minimum of Jt; αi = α ensures convergence within a ball
whose radius depends on α.

Remark 1. Similar to the least mean-square (LMS) algorithm [7],
it is also possible to develop stochastic subgradient solvers of the
R-Lasso minimization problem. Those entail instantaneous sub-
gradient updates with the iteration index i in (7) replaced by the
time index t. Nonetheless, LMS-like R-Lasso solvers can afford
enhanced adaptability as well as minimal complexity and memory
requirements at the expense of slower convergence and steady-state
error (misadjustment).

Remark 2. Whether x(i)
t converges pointwise or within a ball to the

global minimizer of Jt, it can be proved that the limit of x̂R−Lasso
t

as t → ∞ does not necessarily converge to the true x even in the
time-invariant scenario [1]. This should not be surprising because
even the batch Lasso in (2) is not guaranteed to recover the correct
support and at the same time estimate the nonzero entries of x con-
sistently [11, 6]. Such a shortcoming was recently overcome for
the batch Lasso by [11, 12], and motivates the novel RLS-weighted
Lasso approach outlined next for adaptive estimation and tracking
applications involving sparse signals.

4. PERFORMANCE AND RLS-WEIGHTED LASSO

As the nonzero support set is unknown, performance analysis of
sparse signal estimators is distinct from and far more challenging
than the performance of OLS and RLS estimators. For Lasso estima-
tors in particular, one intuitively expects that performance properties
should also depend on the penalty parameter λt. The first desirable
property of a sparse signal estimator x̂t pertains to (strong) support
consistency, which requires

lim
t→∞

Prob [supp(x̂t) = supp(x)] = 1 (8)

while the second property demands (weak) estimation (a.k.a.
√

t)
consistency, i.e., with d denoting convergence in distribution

√
t [Sx (x̂t) − Sx (x)] →d N (0|supp(x)|,1,Σ

−1) (9)

where Sx(x′) : R
N → R

|supp(x)| is an operator selecting only the
entries of x′ corresponding to supp(x) and Σ is a positive defi-
nite matrix. Because both properties entail the nonzero support set,
which is unknown, they are termed oracle properties [6, 11, 10].

1Proofs are omitted due to space limitations but can be found in [1].
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Fig. 1. Squared estimation error when x is time-invariant.

As alluded to in Remark 2, extending the performance analysis
results of [6] for the batch setup, we have proved that the following
holds in the sequential regime when x is time-invariant [1].

Proposition 1. There exists no λt for which R-Lasso can satisfy
simultaneously (8) and (9). Moreover, if λt grows faster than

√
t but

slower than t and the irrepresentable condition in [10] is met, then
R-Lasso can guarantee (8) but not (9). Finally, with λt ∝ √

t the
limit in (8) is strictly less than one but R-Lasso estimates are at least
asymptotically unbiased.

In search for an alternative to obviate the mostly negative perfor-
mance results of Proposition 1, it became apparent that one should
look for a penalty term that is signal dependent and weighs differ-
ently the entries |xn| in the �1 norm term in (4). Generalizing the
OLS-weighted batch Lasso approach in [11, 12] to the sequential
framework herein, we thus came up with the weight function

wμt
(|x|) :=

(aμt − |x|)+
μt(a − 1)

u (|x| − μt) + u (μt − |x|) (10)

where u(·) stands for the step function; (·)+ denotes the nonnegative
part of the quantity in parentheses; and the parameter a is set to
a = 3.7 [6]. Using (3) in this weight function, the cost in (4) with
unweighted �1 norm becomes

JRW−Lasso
t (x) =

1

2

t∑
τ=1

βt−τ‖yτ − Hτx‖2
2

+ λt

N∑
n=1

wμt
(|x̂RLS

t,n |) |xn| (11)

and the resultant RLS-weighted Lasso (RW-Lasso) estimator is
given by

x̂t = arg min
x

JRW−Lasso
t (x) . (12)

Similar to R-Lasso, the estimator in (12) can be implemented us-
ing subgradient iterations. It is slightly more complex than R-Lasso
because it requires running in parallel an RLS algorithm to supply
the needed weights. In return however, the RLS-weighted Lasso
estimator retains the tracking advantages of R-Lasso while for time-
invariant x it can be shown to enjoy the desirable asymptotic perfor-
mance guarantees, as summarized next [1].
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Fig. 2. Squared estimation error when x is slow-varying.

Proposition 2. If the forgetting factor is chosen as β = 1 and the
penalty parameter λt is selected to grow faster than

√
t but slower

than t with μt = λt/t, the RLS-weighted Lasso estimator in (12)
satisfies the oracle properties (8) and (9).

The ensuing remark discusses performance issues when x is
allowed to be slowly time-varying.

Remark 3. To endow R-Lasso and RW-Lasso with tracking capabil-
ities, β must be chosen less than one. In this case however, neither
R-Lasso nor RW-Lasso can provably guarantee the oracle proper-
ties. Nonetheless, if theHτ matrices are orthonormal, it is possible
to express the two estimates in closed form and prove that RW-Lasso
outperforms R-Lasso [1].

5. SIMULATED TESTS

The analytical claims of Sections 3 and 4 are tested here using three
simulated examples.
Test Case 1. Gaussian vector observations were generated according
to (1) with a time-invariant x and parameters N = 100, K = 30,
σ2 = 10−2 and nτ ∼ N (0K,1, σ

2IK) for τ = 1, 2, . . . , 200.
Without loss of generality, the first five entries of x were chosen
equal to unity and all other entries equal to zero; i.e., supp(x) =
{1, 2, 3, 4, 5} and Sx(x) = [1, 1, 1, 1, 1]T . Matrix Ht was formed
with entries drawn from a zero-mean Gaussian distribution with
variance 1/K. Setting β = 1, the simulated algorithms included: (i)
the OLS; (ii) the genie-aided (GA)LS, which is the support-aware
LS estimator applied to a reduced model after removing the regres-
sors corresponding to the zero entries of x; (iii) the R-Lasso with
λt =

√
2σ2t log N and the RW-Lasso with λt =

√
2σ2t4/3 log N

and μt = λt/t. Note that these choices for λt and μt guaran-
tee that the RW-Lasso satisfies the oracle properties. The R-Lasso
and RW-Lasso estimates were obtained iteratively using the sub-
gradient method described in Section 3 with αi = α/

√
i. Fig.

1 depicts the square-error (SE) of the estimates across time, that
is SEt := ‖x̂t − x‖2

2. Because it exploits sparsity, R-Lasso out-
performs the OLS. But it is outperformed by RW-Lasso, whose
performance after a certain time approaches that of GALS, thus
corroborating the claim that the RW-Lasso satisfies the oracle prop-
erties when x is time-invariant.
Test Case 2. The simulation setup here aimed at estimating a
sparse signal xt with time-invariant supp(xt) = {1, 2, 3, 4, 5},
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Fig. 3. Time evolution of the x5 signal entry.

but with slowly-varying nonzero entries, each obeying a first-order
Gauss-Markov process xt+1,n = (1 − ρ)xt,n +

√
ρzt,n with

ρ = 10−3, zt,n ∼ N (0, 1) and initial entries x1,n ∼ N (0, 1) for
n = 1, . . . , 5. All other parameters were selected as in Test Case
1. The same four algorithms were tested but now with β = 0.9,
λt =

√
2σ2 log N

√∑t
τ=1 β2(t−τ) and μt = λt/

∑t
τ=1 βt−τ .

The last choices were made because they exhibited reliable perfor-
mance with orthonormal regression matrices where R-Lasso and
RW-Lasso estimates are available in closed form (cf. Remark 3).
Fig. 2 confirms that even in a slow-varying setup the R-Lasso out-
performs the RLS and is outperformed by the RW-Lasso. Since
β < 1 here, there is no hope to satisfy the oracle properties. Never-
theless, the performance of RW-Lasso again comes close to that of
GARLS, which is the RLS matched to the true support.
Test Case 3. The setting in this example is identical to that of
Test Case 2, except that here the support of the sparse signal also
undergoes step changes. Specifically, at t = 100 the fifth entry of x
starts decreasing while after t = 120 the same entry is set to zero.
In addition, at t = 100 the sixth entries becomes nonzero. Figs. 3
and 4 depict, respectively, the true variations of x5 and x6 across
time, along with the RLS, the R-Lasso and the RW-Lasso estimated
trajectories. As expected, the RLS estimates are not sparse and can
assume a nonzero value even if the true entry is zero; while the R-
Lasso estimates are sparse but clearly under-estimate the true signal
variations. RW-Lasso estimates on the other hand, remain close to
RLS ones for the nonzero entries but succeed also in bringing the
null entries of the sparse signal close to zero, as they should.

6. CONCLUSIONS

Adaptive algorithms were developed in this paper for recursive esti-
mation and tracking of (possibly time-varying) sparse signals based
on observations that obey a linear regression model and become
available sequentially in time. A subgradient-based recursive (R-
) Lasso scheme was introduced first to obviate the growing (with
time) complexity and memory requirements of batch Lasso alterna-
tives. Simulations illustrated that R-Lasso outperforms least-squares
and recursive least-squares (RLS) schemes that do not account for
sparsity when estimating time-invariant and slow-varying signals of
interest. Performance analysis revealed that R-Lasso estimates can-
not simultaneously recover the signal support and the nonzero sig-
nal amplitudes consistently. This shortcoming prompted the de-
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Fig. 4. Time evolution of the x6 signal entry.

velopment of an RLS-weighted (RW-) Lasso modification, which
for proper selection of design parameters can be rendered provably
support- and amplitude-consistent for time-invariant sparse signals.
For time-varying sparse signals neither R-Lasso nor RW-Lasso can
provide such double consistency guarantees, but simulated test cases
demonstrated that the latter outperforms the former.
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