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ABSTRACT

Quickest detection of an abrupt distribution change with an

unknown time varying parameter is considered. A novel

adaptive approach is proposed to tackle this problem, which

is shown to outperform the celebrated Parallel CUSUM Test.

Performance is evaluated through theoretical analysis and

numerical simulations.

Index Terms— Quickest detection, CUSUM test, un-

known parameter

1. INTRODUCTION

Quickest detection is a technique to detect distribution changes

as quickly as possible based on sequential observations [1].

It admits a wide range of applications such as quality control,

medical diagnosis and intrusion detection. When both pre-

change and post-change distributions are completely speci-

fied, many detection procedures have been proposed under

different criterias. One well-known procedure is the Cumu-

lative Sum (CUSUM) test proposed by Page in [2]. Lorden

showed that Page’s CUSUM Test is asymptotically optimal

for independent observations [3], and Lai extended this study

to dependent observations [4]. In many practical situations,

however, the post-change distribution involves unknown pa-

rameters. The Generalized Likelihood Ratio (GLR) Test [3]

is an optimal procedure to tackle such problems, but un-

bounded memory requirement makes it infeasible in practice.

To improve efficiency in storage and computation, Nikiforov

proposed the Parallel CUSUM Test [5], in which multiple

Page’s CUSUM Tests are carried out simultaneously on some

specifically chosen values of the unknown parameters.

In this paper, we propose an adaptive CUSUM algorithm

for quickest detection when there is an unknown parameter in

the post-change distribution and this parameter may be vary-

ing during the detection process. Our new approach can fa-

vorably narrow down the range of the unknown parameter and

track its change adaptively, thus achieves significant perfor-

mance improvement over the Parallel CUSUM Test.

∗This work was supported in part by the US National Science Founda-

tion under Grant CCF-0515164, CNS-0721815, CCF-0830451 and CCF-

0830462.

The remainder of this paper is organized as follows. The

system model is given in Section 2. After discussing exist-

ing approaches to the unknown-parameter problem in Section

3, we propose the adaptive CUSUM algorithm in Section 4,

together with some performance analysis. The simulation re-

sults and conclusions are provided in Section 5 and Section 6,

respectively.

2. SYSTEM MODEL

Suppose a sensor is monitoring some property in the envi-

ronment. Denote by s(t)(t = 1, 2, ...) its (independent) ob-

servation at time slot t, whose probability density belongs to

a single-parameter exponential family {pθ}θ∈Θ with natural

parameter space Θ, defined by:

pθ(x) = h(x) exp(θT (x) − A(θ)), (1)

where T (x) is a sufficient statistic and A(θ) is a normalization

factor. We assume the distribution of s(t) is changed from pλ

to pϕ at some unknown time instant v, where ϕ is unknown

but lies within a given range Φ � [ϕmin, ϕmax], and λ is a

known value outside Φ. Therefore, two hypotheses of interest

are: {
H0 : θ = λ �∈ Φ
H1 : θ = ϕ ∈ Φ.

(2)

Correspondingly, the log likelihood ratio (LLR) is defined as:

lϕ(t) = log
(

pϕ(s(t))
pλ(s(t))

)
. (3)

For performance measurement, we consider detection de-
lay and mean time between false alarms [3], which are defined
respectively as1

T̄1 = sup
v�1

esssupEv

[
(T ∗ − v + 1)+|s(1), ..., s(v − 1)

]
,(4)

T̄0 = E∞ [T ∗] , (5)

where T ∗ is the stopping time determined by the detection

algorithms. Ev denotes the expectation under the assumption

that the change happens at time slot v (t = ∞ means that the

change never happens).

1esssup refers to the worst case of all the pre-change distributions and

[x]+ = max(x, 0).
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3. EXISTING ALGORITHMS

3.1. Page’s CUSUM Test

With full knowledge about the pre-change and post-change

distributions, the Page’s CUSUM Test provides an optimal

scheme minimizing the worst-case detection delay in (4) [3].

Specifically, the stopping time T ∗ in the Page’s CUSUM Test

is given by

T ∗ = inf

{
t

∣∣∣∣ max
1�k�t

t∑
r=k

lϕ(r) ≥ h

}
, (6)

where h is a predetermined threshold and the metric lϕ(r) is

defined in (3). An alternative expression of T ∗ is:

T ∗ = inf
{

t

∣∣∣∣s(t) ≥ h

}
, (7)

with s(t) = max (s(t − 1) + lϕ(t), 0) (and s(0) = 0). It is

equivalent to the above one while allows for more efficient

computation and memory usage due to recursion.

3.2. GLR Test and Parallel CUSUM Test

The unknown parameter in the post-change distribution

makes the detection more challenging. Two well known al-

gorithms in literature are the GLR Test and Parallel CUSUM

Test. In the GLR Test the stopping time is given by:

T ∗ = inf

{
t

∣∣∣∣ max
1�k�t

sup
ϕ∈Φ

t∑
r=k

lϕ(r) ≥ h

}
,

where (c.f. (6)) the sup operation implicates an optimal esti-

mation for the parameter. An obvious drawback of the GLR

Test is its demanding computation cost and memory require-

ment (as no recursive expression is available).

In contrast to the GLR Test the Parallel CUSUM Test [5]

is suboptimal but more efficient. Instead of online estimation

of the unknown parameter, the Parallel CUSUM Test carries

out a collection of CUSUM Tests over L specially chosen val-

ues of ϕ, denoted by ϕ1, ϕ2, ..., ϕL. The stopping time is

given by:

T ∗ = inf {Ti, i = 1, 2, ..., L} ,

where Ti is computed by (7) with ϕ = ϕi. Its suboptimality

lies in the fact that the candidates remain unchanged during

the detection process so that the inaccuracy of the parameters

affects the performance throughout the process. Fairly large

L may be needed to achieve satisfatory detection delay T̄1,

which still incurs substantial compuation burden and impacts

negatively the mean time between false alarms T̄0.

4. ADAPTIVE CUSUM ALGORITHM

Much remains to be done for quickest detection with an un-

known parameter. Especially study is still lacking on the sce-

narios where the unknown parameter varies over time, e.g.,

due to channel fading. In such situations, all algorithms orig-

inally designed with the assumption of fixed parameter (such

as those discussed in Section 3) will degrade. In this sec-

tion, we propose a new quickest detection algorithm, Adap-

tive CUSUM Test, which achieves a better tradeoff between

performance and complexity and performs stably in changing

enviroments.

Our algorithm is recursive in nature, with each recursion

comprising two main interleaved steps: parameter tracking

and CUSUM test. Our parameter tracking approach can in

principle be applied to a generic parameterized distribution.

For rigorous presentation, we restrict our attention to the ex-

ponential family below.

4.1. Parameter Tracking

We denote an estimate of ϕ by ϕ̂ and define2 F (ϕ̂) =
E [lϕ̂(t)], the mismatched Kullback-Leibler (KL) divergence

between pϕ and pλ. We obtain the following result:

Proposition 1 For distributions in the exponential family,
F (ϕ̂) is a strictly concave function and achieves the global
maximum at ϕ̂ = ϕ.
Proof:

F (ϕ̂) = E

[
log

pϕ̂(s(t))
pλ(s(t))

]

= E

[
log

pϕ(s(t))
pλ(s(t))

]
− E

[
log

pϕ(s(t))
pϕ̂(s(t))

]
= E [lϕ(t)] − D(pϕ ‖ pϕ̂), (8)

where D(pϕ ‖ pϕ̂) is the KL divergence between pϕ and

pϕ̂. Since D(pϕ ‖ pϕ̂) is nonnegative [6], F (ϕ̂) achieves

the global maximum when ϕ̂ = ϕ.

Substituting (1) in (8) and taking derivation, we have

dF (ϕ̂)
dϕ̂

= −dD(pϕ ‖ pϕ̂)
dϕ̂

= −E

[
d

dϕ̂

(
(ϕ − ϕ̂)T (x) − (A(ϕ) − A(ϕ̂))

)]

= E[T (x)] − dA(ϕ̂)
dϕ̂

,

and
d2F (ϕ̂)

d2ϕ̂ = −d2A(ϕ̂)
d2ϕ̂ . According to the differential identi-

ties of A(ϕ) [7],
d2A(ϕ̂)

d2ϕ̂ = V ar(T (x)) > 0, therefore F (ϕ̂)
is a strictly concave function.

�
According to Prop. 1 we can draw the following conclusions:

• given a small value δ, we can always find two estimates

ϕ̂a, ϕ̂b such that ϕ̂b = ϕ̂a + δ and F (ϕ̂a) = F (ϕ̂b);
• ϕ lies within the interval Φ̂ � (ϕ̂a, ϕ̂b).

Intuitively, we can narrow down the range of ϕ from its origi-

nal range Φ to Φ̂; this also allows parameter tracking in time-

varying environments. An iterative procedure can be used to

find ϕ̂a and ϕ̂b. Given δ, one begins by arbitrarily choosing

ϕ̂a and ϕ̂b within Φ, say ϕ̂0
a and ϕ̂0

b . And then the succeeding

values of ϕ̂a and ϕ̂b are obtained according to the recursion:

2Here the expectation is with respect to pϕ.
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ϕ̂k+1
a = ϕ̂k

a + ξDk, (9)

ϕ̂k+1
b = ϕ̂k+1

a + δ, (10)

where ϕ̂k
a and ϕ̂k

b represent the values of ϕ̂a and ϕ̂b at the kth

iteration, Dk is the difference between F (ϕ̂k
b ) and F (ϕ̂k

a) at

the kth iteration, given by:

Dk = F (ϕ̂k
b ) − F (ϕ̂k

a) = E

[
log

pϕ̂k
b

pϕ̂k
a

]
,

and ξ is a step size controlling the rate of adjustment. In prac-

tice, it is a common approach to replace the ensemble average

Dk by the time average

D̂k = lϕ̂k
b
(k) − lϕ̂k

a
(k) = log

pϕ̂k
b
(s(k))

pϕ̂k
a
(s(k))

,

or a block updating version of it. Convergence analysis is

straightforward. If Dk > 0, ϕk+1
a and ϕk+1

b will grow ac-

cording to (9) and (10), so that Dk+1 will decrease due to

the concavity of the function. Similarly, if Dk < 0, ϕk+1
a

and ϕk+1
b will move back so that Dk+1 will increase. In both

cases, Dk converges to zero surely. δ is a key factor in our al-

gorithm. On the one hand larger δ leads to faster convergence.

On the other hand, δ is the range for the unknown parameter,

which is desired to be small. We give an approach to set δ
below.

4.2. CUSUM test

In the process of tracking the unknown parameter, we can

conduct change detection through an appropriate CUSUM

test simultaneously. What we need is to determine an es-

timate within the new range of each iteration. Define a

non-optimality coefficient εϕ as

εϕ = 1 − T̄ opt
1

T̄ϕ
1

,

where T̄ opt
1 is the optimal detection delay given by the Page’s

CUSUM Test when ϕ is known, and T̄ϕ
1 is the detection

delay achieved by some detection procedure when the true

value ϕ is unknown (such as the Parallel CUSUM Test or our

Adaptive CUSUM Test). In the Parallel CUSUM Test [5],

given a threshold on the maximum non-optimality coefficient,

εm � supϕ∈[ϕmin,ϕmax] εϕ , we can predetermine L candi-

dates {aj} and confidence intervals3 [aj , āj ] associated with

these candidates . δ can be chosen as the minimal confidence

interval, i.e.,
δ = min

1≤j≤L
(āj − aj).

After (9) and (10), the value used in the CUSUM test is

decided as:

ϕ̄k = ϕk
a + αδ,

where α = 1/2 when F (ϕ̂) is symmetric with respect to ϕ, or

α = min1≤j≤L(aj − aj)/δ when F (ϕ̂) is asymmetric. If ϕ̄k

is out of the range [ϕmin, ϕmax], it is set to ϕmin or ϕmax,

3Confidence intervals are disjoint and their union covers the whole range

of the unknown parameter. If the true value lies within a candidate’s confi-

dence interval, the condition εϕ ≤ εm can be satisfied by using this candi-

date in the CUSUM test.

whichever is closer. Our algorithm continues by substituting

ϕ̄k as the true value of ϕ in the CUSUM test. ϕ̄k converges

to some value ϕ̄ when the parameter tracking procedure con-

verges.

Under H1, ϕ̄ = ϕ for the symmetric F (ϕ̂) since when the

algorithm converges, ϕ lies right in the middle of ϕ̂a and ϕ̂b.

In such a case this procedure provides an adaptive estimation

for the unknown parameter. For the asymmetric F (ϕ̂), ϕ̄ �= ϕ
but it can be proved4 that εϕ < εm; and in practice εϕ is often

much smaller than εm, as shown by the simulation result in

the next section. The detection delay can be approximated

by [3]

T̄1 ≈ h

E1[lϕ̄(t)]
as h → ∞,

Under H0, the mean time between false alarms admits [3]:

T̄0 ≥ eh,

which means there is no performance loss in terms of T̄0, un-

like the Parallel CUSUM Test for which T̄0 ≥ 1
Leh .

5. NUMERICAL RESULTS

5.1. Symmetric F (ϕ̂)

First we consider detecting a sinusoid wave with an unknown

amplitude as an example to demonstrate the performance im-

provement of our Adaptive CUSUM Test over the Parallel

CUSUM Test. The following hypotheses are assumed:{
H0 : s(t) = n(t)
H1 : s(t) = A sin(wtTs) + n(t),

where A is an unknown amplitude within the range [2, 36]; w
is the carrier frequency and Ts is the sampling period, both of

which are known. n(t) is Gaussian noise with zero mean and

unit variance.
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Fig. 1: Performance comparison : fixed amplitude.

Denote by Â an estimate of amplitude A. It is easy to

check F (Â) = E[lÂ(t)] is symmetric about A. We choose

three candidates for the Parallel CUSUM Test so that its

computation complexity is comparable with the Adaptive

4The proof is omitted in the interest of space.
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Fig. 2: Performance comparison : time-varying amplitude

CUSUM Test. We set εm to 0.25 and the corresponding three

candidates of the Parallel CUSUM Test are determined as

3, 6, 18.

Fig. 1 compares non-optimality coefficients of our Adap-

tive CUSUM Test and the Parallel CUSUM Test for differ-

ent true amplitudes, staying fixed during the detection pro-

cess. We can see non-optimality coefficients of the Paral-

lel CUSUM Test are substantially larger than those of our

Adaptive CUSUM Test at almost all possible amplitudes (ex-

cept for the three candidates chosen by the Parallel CUSUM

Test). The average non-optimality coefficient of the Parallel

CUSUM Test is 0.11, while for our Adaptive CUSUM Test,

it is 0.01, indicating little degradation in optimality.

In Fig. 2, it is assumed that the sinusoid wave goes though

a block fading channel, where the amplitude changes every

600 time slots randomly within the range rather than fixed.

We compare the average5 non-optimality coefficients of these

two tests under different average number of variations. We

can see that the performance of our Adaptive CUSUM Test is

stable and close to the optimal detection since it can track the

amplitude change, while the Parallel CUSUM Test performs

worse as more variations are involved.

5.2. Asymmetric F (ϕ̂)

To demonstrate the performance of our algorithm when the

objective function is asymmetric, we consider detecting the

change of the mean in a poisson distribution. The hypotheses

are as (2) with λ = 1 and Φ = [2, 40]. We set the non-

optimality coefficient εm = 0.25, which results in three can-

didates 2.6, 8.1 and 56.9 for the Parallel CUSUM Test.

Fig. 3 compares non-optimality coefficients of these two

tests. We observe that the Adaptive CUSUM, which may not

estimate the true parameter in this scenario, still significantly

outperforms the Parallel CUSUM (unless some candidate of

the Parallel CUSUM coincides with the true value).
5For each point of Fig. 2, 250 independent experiments are conducted to

guarantee its fidelity.
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Fig. 3: Performance comparison for the asymmetric case.

6. CONCLUSIONS

In this paper, we have studied quickest change detection with

an unknown parameter for a single observer. An Adaptive

CUSUM Algorithm is proposed to narrow down the range of

the unknown parameter and track its possible change during

the detection process. Analysis and numerical results show

that the new algorithm achieves better performance than the

Parallel CUSUM Test. Interesting future directions include

quickest change detection with multiple unknown parameters,

and collaborative quickest detection in an ad-hoc network.

We will also consider applications of our techniques to the

spectrum sensing problem in Cognitive Radio.
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