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ABSTRACT

This paper studies the asymptotic distribution of the eigenvec-
tors estimated by some PCA algorithms based on the weighted
subspace criterion. This enables us to analyse how the choice
of the weighting matrix affects the algorithm’s performance,
an issue previously overlooked.

Index Terms— Principal component analysis, weighted
subspace criterion, asymptotic performance analysis.

1. INTRODUCTION

Research in subspace and component-based techniques was
initiated in the Statistics literature in the middle of the last
century through the problem of linear feature extraction solved
by the Karhunen-Loève Transform. However the interest of
the signal processing community in adaptive subspace and
component-based schemes remains strong as it is evident from
the numerous articles and reports published in this area each
year. In contrast, only a few contributions have been dedi-
cated to the theoretical performance analysis of these adaptive
algorithms.
In particular, stochastic approximation gradient-like algo-

rithms devoted to principal and minor subspace analysis (PSA
and MSA) or principal and minor component analysis (PCA
and MCA) have been mainly studied in stationary environ-
ments from two points of view. The first is their convergence
in a decreasing step-size situation, using the stability theory of
an associated ordinary differential equation (ODE) (see e.g.,
[1], [2] and the references therein). In a constant step-size sit-
uation, it has been shown [3] that the sequence of estimates
can be approximated by the associated ODE, in the sense of
weak convergence of random processes as the step size tends
to zero. The second concerns the asymptotic Gaussian case
when both the step size tends to zero and the number of sam-
ples tend to∞ and has been derived for only a few algorithms
(see e.g., [4], [5], [6]).
The purpose of this paper is to use the approach devel-

oped in [5], to derive the asymptotic distribution of the esti-
mate issued from a family of adaptive PCA and MCA algo-
rithms derived from the weighted criterion introduced in [7].
One of these gradient-descent like algorithms has just been

the subject of a new fast orthogonalization step [8]. From the
estimation accuracy point of view, the choice of the weighting
matrix crucially affects the algorithm’s performance as been
shown by simulations in [8]. Hence, it would be of interest to
analyse the effect of this weighting matrix on the algorithm’s
performance and derive, if possible, its optimal value in some
sense. This point will be an application of our analysis.
This paper is organized as follows. In Section 2, we give

an overview of the family of adaptive PCA and MCA algo-
rithms derived from the weighted criterion introduced in [7].
Then, in Section 3, after presenting a bref review of a gen-
eral Gaussian approximation result, closed-form expressions
of the covariance in the limiting distributions of the eigenvec-
tor estimators in a constant step size environment are given
by solving Lyapunov equations. Finally, we present briefly
in Section 4 some simulation results to illustrate the optimal
choice of the weighting matrix.

2. REVIEW OF THE ALGORITHMS UNDER STUDY

For a given n × n covariance matrix Rx = E(xxT ) of a
Gaussian distributed, zero mean real random vector x, denote
by λ1 ≥ . . . ≥ λn the eigenvalues of Rx and by v1, . . . ,vn

corresponding normalized eigenvectors. Consider the prob-
lem of adaptively estimating r < n normalized eigenvectors
corresponding to the r largest [or smallest] distinct eigenval-
ues (λ1, . . . , λr) with λr > λr+1 [resp. λn−r+1, . . . , λn with
λn−r > λn−r+1] ofRx.
The PCA and MCA stochastic approximation algorithms

that are studied in this paper, are derived from a small change
in the subspace criterion [9] that reduces its ambiguous solu-
tion to a unique set of eigenvectors. If

J(W) def= Tr(ΩWT RxW) =
r∑

i=1

ωiwT
i Rxwi (1)

where W def= [w1, ...,wr] ∈ Rn×r is an orthogonal matrix
and Ω def= Diag(ω1, .., ωr) with ω1 > ... > ωr > 0, we
have the following lemma introduced for PCA in [7], proved
in [11], then recently in [8] with a unifying proof for PCA and
MCA.
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Lemma 1 The maximization or minimization of J(W) (1)
has the unique solution {±v1, ..±vr} or {±vn−r+1, ..±vn}
respectively. All the stationary points of J(W) are saddle
points, except the global maximum and global minimum solu-
tions specified above.

The maximization or minimization of the weighted subspace
criterion J(W) subject to the constraint WT W = Ir can
be adaptively solved by constrained gradient-ascent/descent
techniques using the instantaneous estimate xkxT

k ofRx.
Since the gradient function of J(.) under orthonormal-

ity constraint (see e.g., [2, Ch.7.2]) is equal to RxWΩ −
WΩWT RxW, the PCA and MCA stochastic approxima-
tion algorithms, that we denote here by weighted Oja algo-
rithm 1 (WOja1), follow clearly

Wk+1 = Wk ± μk(xkxT
k WkΩ − WkΩWT

k xkxT
k Wk).

(2)
Another approach consists in using an unconstrained gra-

dient ascent/descent algorithm followed by an orthonormal-
ization step. Using the gradient function RxWΩ of J(.)
without constraint, this gives

Wk+1 = {Wk ± μkxkxT
k WkΩ}Gk+1, (3)

in which Gk+1 is a matrix depending on W′
k+1

def= Wk ±
μkxkxT

k WkΩ, which approximately orthonormalizes the co-
lumns of W′

k+1. Thus, Wk has approximately orthonormal
columns for all k. Depending on the form of matrix Gk+1,
variants of (3) are obtained. IfGk+1 is the symmetric square
root inverse of W′T

k+1W
′
k+1, we obtain [10, ch.4] after a

power expansion in μk where all but the zero and first or-
der terms are omitted, the following stochastic approximation
algorithm denoted here by weighted Oja algorithm 2 (WOja2)

Wk+1 = Wk ± μk[xkxT
k WkΩ

−1
2
WkΩWT

k xkxT
k Wk − 1

2
WkWT

k xkxT
k WkΩ].(4)

Instead of deriving a stochastic approximation algorithm from
a specific orthonormalization matrix Gk+1, an analogy with
Oja’s algorithm [1]

Wk+1 = Wk + μk[In − WkWT
k ]xkxT

k Wk

has been used in [7] to derive the following algorithm denoted
here by weighted Oja algorithm 3 (WOja3)

Wk+1 = Wk±μk

[
xkxT

k Wk − WkΩWT
k xkxT

k WkΩ−1
]
.

Using yk
def= WT

k xk, yΩ,k
def= Ωyk and zk

def= WkyΩ,k, we
note that WOja1, WOja2 and WOja3 algorithms require only
O(nr) operations at each update.
To the best of our knowledge, no complete theoretical per-

formance analysis of these algorithms has been carried out
until now. However, the eigenvectors [±v1, ...,±vr], have

been proved to be locally asymptotically stable points for the
associated ODE corresponding to the WOja1 [11] and WOja3
[12] PCA algorithms. As for the MCA algorithms, they have
been considered as unstable by simulations [8]. Techniques
to stabilize these MCA algorithms have been proposed in [8]
consisting to an additional step of exact orthonormalization.
The denoted MCA-OFRANS algorithms has been proposed
where the matrix Gk+1 of (3) is the exact symmetric square
root inverse ofW′T

k+1W
′
k+1. Applied toW′

k+1
def= xkxT

k Wk

Ω−WkΩWT
k xkxT

k Wk) of (2), the denoted MCA-OOja al-
gorithm has been derived. However these two MCA algo-
rithms remain sensitive to numerical rounding errors that are
eliminated by using an equivalent Householder transform im-
plementation of this last step of exact orthonormalization.

3. ASYMPTOTICAL PERFORMANCE ANALYSIS

3.1. A short review of a general Gaussian approximation
result

In this section, we evaluate the asymptotic distributions of
eigenvector estimators given by the previous algorithms. For
this purpose, we shall use the following result [13, Th.2, p.108].
Consider a constant step size recursive stochastic algorithm

θk+1 = θk + μf(θk,xk) (5)

with xk = g(ξk), where ξk is a Markov chain independent
of θk. Suppose that the parameter vector θk converges al-
most surely to the unique asymptotically stable point θ∗ in
the corresponding decreasing step size algorithm. Consider
the continuous Lyapunov equation

DCθ + CθDT + G = O (6)

where D and G are, respectively, the derivative of the mean
field and the covariance of the field of algorithm (5)

D def= E[∂f
∂θ (θ,xk)]θ=θ∗ ,

G def=
∑∞

k=−∞Cov[f(θ∗,xk), f(θ∗,x0)].

If all the eigenvalues of the derivative D of the mean field
have strictly negative real parts, then, in a stationary situa-
tion, when μ → 0 and k → ∞, we have the convergence in
distribution

μ−1/2(θk − θ∗)
L→ N (0,Cθ), (7)

where Cθ is the unique symmetric solution of the Lyapunov
equation (6).

3.2. Asymptotic distributions of eigenvector estimators

To characterize the derivative of the mean field and the co-
variance of the field of the WOja1, WOja2 and WOja3 algo-
rithms, we use the Vec operator which turns the n × r matrix
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W into the nr×1 vector parameter vec(W). Thus these three
PCA/MCA algorithms with constant step size are written in
the form

vec(Wk+1) = vec(Wk) ± μf(vec(Wk,xkxT
k )) (8)

3.2.1. Local characterization of the field

Derivative of the field: Using a first order expansion of the
field f(., .) with respect to its first argument, we obtain after
some algebraic manipulations the following derivatives asso-
ciated with the three PCA algorithms

D1 = Ω ⊗ Rx − ΛΩ ⊗ In − Ir ⊗ (WΛΩWT )
− [ΛWT ⊗ WΩ]Kn,r

D2 = Ω ⊗ Rx − ΛΩ ⊗ In

− 1
2
[Ir ⊗ (WΛΩWT ) + Ω ⊗ (WΛWT )]

− 1
2
[(ΛWT ) ⊗ WΩ) + (ΛΩWT ⊗ W)]Kn,r

D3 = Ir ⊗ Rx − Λ⊗ In − Ω−1 ⊗ (WΛΩWT )
− [ΛΩ−1WT⊗ WΩ]Kn,r,

whereW def= [±v1, ..,±vr],Λ
def= Diag(λ1, .., λr) andKl,m

denotes the vec-permutation matrix that transforms vec(AT )
to vec(A) for any l × m matrices.
From these expressions, and from those associated with

the MCA algorithms, the following theorem is proved in [15]
Theorem 1 The eigenvalues of the derivative D of the mean
field of the WOja1 PCA algorithm are strictly negative real
and those of the WOja2 and WOja3 PCA algorithms have
strictly negative real parts. In contrast, there exist eigenval-
ues with positive real parts for all the three MCA algorithms.

Covariance of the field: Noting that field (8) is linear in
xkxT

k and using the covariance of vec(xkxT
k ) given by [14,

p. 57] Cov(vec(xxT )) = Rx ⊗ Rx + (Rx ⊗ Rx)Kn,n, for
independent Gaussian distributed data xk, allow us to derive,
after simple algebraic manipulations, the following expres-
sions of the covariance of the field

G1 = ΛΩ2 ⊗ Rx

− 2ΛΩ ⊗ (WΛΩWT ) + Λ ⊗ (WΛΩ2WT )
+ [2ΛΩWT ⊗ WΛΩ −ΛWT ⊗ WΛΩ2

−ΛΩ2WT ⊗ WΛ]Kn,r

G2 = ΛΩ2 ⊗ Rx − 1
2
ΛΩ ⊗ (WΛΩWT )

− 3
4
ΛΩ2 ⊗ (WΛWT ) +

1
4
Λ ⊗ (WΛΩ2WT )

+ [
1
2
ΛΩWT ⊗ WΛΩ − 1

4
ΛWT ⊗ WΛΩ2

−1
4
ΛΩ2WT ⊗ WΛ]Kn,r

G3 = Λ⊗ Rx

− 2ΛΩ−1 ⊗ (WΛΩWT ) + ΛΩ−2 ⊗ (WΛΩ2WT )

+ [2ΛWT ⊗ WΛ− ΛΩWT ⊗ WΛΩ−1

−ΛΩ−1WT ⊗ WΛΩ]Kn,r.

3.2.2. Solution of the Lyapunov equation

For independent observations xk and for the investigated al-
gorithms, which can be written in a form similar to (5) for
which the derivative of the mean field have strictly negative
real parts (Theorem 1), the hypotheses of the model of Ben-
veniste et al ([13, Th.2, p.108]) are fulfilled. However, the
underlying assumption for the results by Benveniste et al is
that the solution of the corresponding stochastic approxima-
tion type algorithms with decreasing step size, almost surely
converges to the unique asymptotically stable solution of the
associated ODE. Since the normalized eigenvectors are de-
fined up to a sign, the global attractorW is not unique. Still,
the practical use of the Benveniste results in such situation is
usually justified by using formally a general approximation
result ([13, Th.1, p.107]). Furthermore, the almost sure con-
vergence of the associated decreasing step size algorithms are
not strictly fulfilled for these WOja PCA algorithms. This a.s.
convergence would need a boundedness condition, whose sat-
isfaction is a challenging problem as discussed in [5]
If we allow ourselves the Benveniste results in our situ-

ation, the Lyapunov continuous equations can be solved ex-
actly. Using the approach of [5] that consists in representing
the matricesD andG in the orthonormal basis constituted by
the nr columns of the r block diagonal matrixDiag(V, ..,V)
withV def= [v1, ..,vn], the following closed-form expressions
of the covariance matrix CW solution of the Lyapunov equa-
tion (6) are derived [15].

Theorem 2 The covariance matrices CW of the asymptotic
distribution that appears in (7) read

CW =
∑

1≤i≤r
1≤k �=i≤n

bk,i(er
i e

rT

i ⊗ vkvT
k )

+
∑

1≤i�=j≤r

ci,j(er
i e

rT

j ⊗ vjvT
i ) (9)

with for the WOja1, WOja2 and WOja3 PCA algorithms re-
spectively

b
WOja1
k,i =

λiλk(ωi − ωk)
2(λi − λk)

11≤k �=i≤r +
λiλkωi

2(λi − λk)
1r<k

c
WOja1
i,j = −λiλj(ωi − ωj)

2(λi − λk)
11≤i�=j≤r

b
WOja2
k,i =

λiλk(ωi − ωk)
4(λi − λk)

11≤k �=i≤r +
λiλkωi

2(λi − λk)
1r<k

c
WOja2
i,j = −λiλj(ωi − ωj)

4(λi − λk)
11≤i�=j≤r

b
WOja3
k,i = fk,i11≤i�=k≤r +

λiλk

2(λi − λk)
1r<k

c
WOja3
i,j = gi,j11≤i�=j≤r
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where er
i and 1A denote the ith unit vector in Rr and the

indicator function of the condition A and where

fk,i =
λiλk

ωk
ωi

(√
ωk
ωi
−

√
ωi
ωk

)(
(λi−λk)

√
ωk
ωi
−λi

√
ωi
ωk

(1+
ωi
ωk

)
)

2(λi−λk)(
λiωi
ωk

+
λkωk

ωi
)

gi,j =
λiλj

(√
ωi
ωj
−

√
ωj
ωi

)(
λi(2

√
ωi
ωj
−

√
ωj
ωi

)+λj(2
√

ωj
ωi
−

√
ωi
ωj

)

)

2(λj−λi)(
λjωj

ωi
+

λiωi
ωj

)

4. ILLUSTRATIVE EXAMPLE

Simple measures of performance of the studied PCA algo-
rithms can be derived from Theorem 2 if we suppose that
both the first and second moments of the limiting distribution
of μ−1/2(Wk − W) are equal to the corresponding asymp-
totic moments. Among them we have in the steady state,
‖E(Wk)−W‖2

Fro = o(μ), Cov(vec(Wk)) = μCW + o(μ)
which implies
E‖Wk − W‖2

Fro = μTr(CW ) + o(μ) ≈ μ
∑

1≤i≤r
1≤k �=i≤n

bk,i,

E‖wk,i−vi‖2
Fro = μTr([CW ]i,i)+o(μ) ≈ μ

∑
1≤k �=i≤n bk,i

and [15] E‖WT
k Wk − Ir‖2

Fro = o(μ).
We note that from the expressions of bk,i given by Theo-

rem 2, the MSE of each estimated eigenvectorwk,1, . . . ,wk,r

can be arbitrarily fixed by an appropriate choice of (μ, ω1, .., ωr).
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Fig.1 Learning curves of the MSE E‖Wk−W‖2Fro averaging 1000 inde-
pendent runs for the 3 PCAWOja algorithms compared to μTr(CW ) (0) for
different values 0.9 (1), 0.6 (2), 0.4 (3), 0.1 (4) of ω1/ω2 for n = 3, p = 2
and (λ1, λ2, λ3) = (1, 0.6, 0.2).
Concerning the minimization of the misadjustmentE‖Wk

−W‖2
Fro, we note that it vanishes for ω1 = .. = ωr for which

the speed of convergence tends to∞. Consequently a misad-
justment/convergence speed tradeoff crops up for the choice
of the ”optimal” weighting matrix. To solve this dilemma,
a solution consists in fixing the theoretical value μTr(CW )
and searching for the value of (ω1, . . . , ωr) that maximizes

the speed of convergence. Noting that the set of parameters
(μ, ω1, . . . , ωr) = (μ/c, cω1, . . . , cωr) [resp. (μ, ω1, . . . , ωr)
= (μ, cω1, . . . , cωr)] (for arbitrary value of c > 0) yields
the same WOja1 and WOja2 algorithms [resp. WOja3 algo-
rithm], this speed of convergence depends only on the ratios
ω2/ω1, .., ωr/ωr−1. To illustrate this choice, Fig.1 displays
the similar behavior of the three studied PCA WOja algo-
rithms in a particular scenario. A thorough analysis in relation
with (λ1, . . . , λr) will be presented in [15].
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