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Abstract: This paper proposes a causal approach to adaptive 
estimation of time-frequency localized signals using Adaptive 
Notch Filters (ANF). By adaptively estimating the envelope of each 
sinusoidal component, it is possible to specify the tracking quality 
and restart the ANF unit whenever the tracked sinusoid 
disappears, as well as preventing the ANF from “tracking” non-
existent sinusoids (the frequency mis-lock situation). Employing 
multiple ANFs allows an efficient approach to tracking time-
frequency localized signals such as speech. 

Index Terms – Adaptive filters, Notch filters, Time-varying filters, 
Time-Frequency Tracking, Signal Resolution. 

I. INTRODUCTION 
The tracking aspect of adaptive filtering researchers has 

traditionally been focused on time-varying signals or systems with 
fixed or slowly-varying characteristics [1][2]. The problem of 
tracking non-stationary signals remains mostly open and is still a 
difficult obstacle for the research community.  

An important class of non-stationary signals is the so called 
natural signals that are obtained from audio or visual sources. It is 
a well-used premise that these natural signals possess the time-
frequency localization property [3]. The prospect of sparse 
representations in the time-frequency plane has led to an expansion 
in non-causal time-frequency representation processing methods 
like the Gabor filter [3] approaches as well as the multiresolution-
wavelet analysis and compression [4] [5] approaches. 

The approach of adaptive (causal) tracking of these signals is 
largely based on the similar approaches of transform-domain and 
sub-band filtering [2]. These approaches are limited in the sense 
that the sub-bands are fixed, making the task of tracking frequency 
changing signals such as chirps difficult [6]. In any case, a lesson 
is drawn, which is in order to track the local time-frequency signals 
simple “slow time-varying” models such as ones in the traditional 
tracking literature must be discarded and replaced by ones that 
describe fully the time-frequency localization property. 

A better candidate to achieve that modeling goal is the 
Adaptive Notch Filter (ANF), such as the well-known adaptive 
filter proposed by Nehorai [7]. ANF has been shown to track 
stationary sinusoidal signals exceptionally well, as well as those 
with slow frequency variation. Improvements to the theory have 
been made from various aspects, such as the asymptotic 
convergence property [7] [8], filter structure [7][9][10], impact on 
the convergence by properly choosing the forgetting factor and the 
pole contraction factor [11][12], and recently the internal 
prediction of frequency variation to improve the steady state 
tracking performance [6]. 

An ANF, when being used to track a localized signal in the 
time-frequency plane, has a significant advantage over the 

transform domain characterizations such as the STFT (short-time 
Fourier Transform) or wavelet-like transforms in the sense that the 
frequency resolution is much higher with the ANF due to the 
flexible time-bandwidth of the filter. More importantly, this high 
resolution frequency is allowed to vary within the limited time-
duration. Thus, the approach is significantly different from the 
transform-domain approaches where the frequency is considered to 
be a single pure tone for each time-frequency box with a frequency 
estimation variation bounded by the associated Heisenberg 
uncertainty of the sub-band filter. Another significant advantage of 
the ANF approach over the transform-domain methods is that each 
ANF unit is free to occupy any time-frequency region without any 
rigid partitioning of the phase-plane (including the time-domain) 
such as would occur with a wavelet-like transform method. 

In order for an ANF to track a signal locally constrained in the 
time-frequency plane, it is important to emphasize that the local 
frequency content is usually time-limited. Thus it is absolutely 
important for any ANF structure to achieve 2 major goals: fast and 
correct convergence when a sinusoidal signal is detected, and 
switching-off from the tracking state when the sinusoidal signal is 
no longer available. The first goal of convergence, however, might 
be difficult to achieve with any ANF structure due to the IIR 
structure and the associated non-quadratic error surface. In fact, the 
error surface contains local minima which cause the filter to mis-
lock on the wrong frequency every now and then. The internal 
adaptive gradient descent mechanism usually cannot distinguish 
between the ANF being locked onto the right frequency and the 
ANF mis-locking onto the wrong frequency. Therefore, non-linear 
approaches have been sought to improve the performance in 
convergence, such as the methods described in a recent paper by 
the authors [13]. In this paper a new thresholding scheme is 
proposed that can solve both the problem of mis-lock (thereby 
improving convergence) and the detection of a sinusoidal signal 
that suddenly disappears. The approach utilizes a quality index 
based on the magnitude of the extracted sinusoidal signal that is 
adaptively estimated online. Extended from that single unit a full 
set of cascaded ANFs can then be employed to analyze signals in 
the time-frequency plane. 

Recent research in [14] [15] [16] have similar cascaded ANF 
structures to track multiple, but pure sinusoids. Our approach is 
generalized enough to also track time-varying, frequency band-
limited signals. We start the paper by briefly reviewing the concept 
of the ANF, its application in adaptive spectral line enhancement, 
and its role as a time-frequency primitive element. 

II. THE ANF AS A TIME-FREQUENCY ATOM 
Consider a single-sinusoid signal embedded in noise: 

 (2.1) 
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where  is the phase of the sinusoid and  is ZMWG noise. 
An ANF, such as one proposed by Nehorai [7], is a 2nd-order 

IIR filter whose zeros are on the unit circle and whose poles are 
inside the unit circle, but on (or near) the same radial line as the 
zeros. The structure of this filter is described by the IIR filtering 
equation: 

 (2.2) 

where parameter  is the cosine of the instantaneous 
frequency  that the filter is notching and  is the pole 
contraction factor that indicates the location of the poles on the 
radial lines of the zeros. Since the zeros are on the unit circle and 
the poles are located close to, but in from, the zeros, the filter 
notches a single frequency while allowing all other frequencies to 
pass. Allowing the parameters  of the filter to be 
adaptive by the prediction error method [7] [17], the ANF can even 
notch time-varying sinusoidal signals such as chirps. 

In spectral line enhancement, the ANF can be used to recover 
 from  by subtracting : 

 (2.3) 
Equation (2.2) shows that each 2nd-order notch filter is in fact a 
cascade of two complex-parameter 1st-order notch filters: 

  
(2.4) 

Notice that the two 1st-order notch filters are of the same form, 
with only differing notching frequencies at  and . The 
mechanism of recovering sinusoidal signals by an ANF can be 
further examined by focusing on the partial fraction expansion of 
each segment of the 1st-order notch filter. Define  to be the 
filtered signal of  from the first notch: 

 (2.5) 

Then by recursive calculation we get: 

  

(2.6) 
Define   where   
and . Then  can be represented as: 

 (2.7) 

Note that because ,  decreases polynomially when 
 and can be considered as a (varying) time window function. 

Similarly  acts as the time averaged frequency. 
Perform a change of variable , with  
and let , . From 

 and  a complex component of  can be recovered by: 

  (2.8) 

As we can see,  is just the projection of vector 
 (the past values of  on function 

) being windowed by the function . Thus, it can be 
seen that recovering a sinusoid using an ANF is in fact taking a 
causal inner product of   with , a causal 
function similar to a Gabor localized time-frequency atom. One 
advantage obtained from this analysis when compared to the fixed 
transform is that the time-bandwidth of the windowing function 
can vary (increase or decrease) by simply controlling the pole 
contraction factor , and hence the frequency uncertainty of this 
atom can be changed from imprecise (low time-bandwidth) to very 
precise (high time-bandwidth, ). 

III. NON-ABSOLUTE CONVERGENCE OF THE ANF AND  
THE QUALITY INDEX OF THE CONVERGENCE 

Due to the IIR structure, any ANF structure is known to have 
the non-absolute convergence problem[13]. Fig. 1 illustrates the 
error surface of the ANF structure (against the cosine frequency  
and the bandwidth control parameter ) when tracking a single-
sinusoid signal. It can be seen from the figure that local minima 
exist near the region of  for almost all frequencies different 
from the true frequency. This phenomenon causes the gradient to 
decrease to 0 and the algorithm ceases to adapt to the frequency. 
Thus it is imperative to detect such kind of frequency mis-lock and 
re-start the ANF to other parameter regions where the error surface 
is still convex allows correct frequency adaptation.  

Another scheme that requires attention is when the currently 
tracked frequency component suddenly disappears, which is quite 
common for signals local in the time-frequency plane. If the ANF 
is still tracking this non-existing sinusoid, the recovered signal is 
just noise (with extremely small frequency bandwidth). Thus, it is 
also necessary for the ANF to get out of the current parameter 
region and start tracking other frequencies. 

The two aforementioned problems require some kind of index 
to indicate when the ANF is no longer tracking any useful signal. 
An approach taken in [13] in the case of a single-sinusoid signal is 
to correlate the predicted signal  and the input signal . If 
the ANF locks onto the right frequency then  will strongly 
correlate to . On the other hand if the ANF does not lock onto 
the right frequency, the estimated signal  will consist of a 
filtered version of the past white noise and therefore does not 
correlate with the present measurement signal   (consisting of 
the sinusoidal signal and the white measurement noise, neither of 
which correlates to the past white noise). The correlation can be 
performed online using a zero-order LMS structure. However this 
approach does not scale well to the multiple-sinusoid scheme. 

In this paper, we propose a better index, which is the online 
estimation of the narrow band signal’s magnitude . Inspired by 
the adaptive phase-lock loop [1],  can be estimated by the much 
simpler unit demonstrated in Fig. 2. Note that when , the 
ANF locks onto a right frequency, or it mis-locks onto a wrong 
frequency, or the ANF tracks a sinusoid that is no-longer available. 
In these cases the reconstructed signal  will have the form 

 (3.1) 

which is a narrow band signal. By modulating  with itself, the 
spectrum of the modulation will consist of a component of  at 
DC and a component at . In fact, ideally 

  
(3.2) 
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Thus, recovering  is a task of filtering out the high frequency 
component of  (also note that  is known, hence the 
bandwidth of  is also known). A complimentary filter can be 
employed in this case to obtain 

  (3.3) 

The estimation of  can be used to indicate the quality of the 
currently estimated sinusoidal signal  by comparing  to a 
threshold in a similar fashion to non-causal thresholding methods 
in spectral subtraction or wavelet thresholding.  If  is above a 
certain threshold then we have a usable sinusoidal signal. 
Otherwise, the filter is tracking noise and it needs to be re-started. 

Fig. 1: Nehorai ANF error surface 
with evolution of adaptive 

parameters ( , ) in the case of 
frequency miss-lock (horizontal 
axis extended from -1 to 1 is )

Fig. 2: ANF with conditional reset

In order to avoid the case when the estimation of  is very 
small when the ANF is still in the convergence state, the restarting 
condition will be issued only when  is less than the threshold 
and the pole contraction factor  is greater than a certain value, 
indicating that the ANF has “locked-in” a frequency. The restarting 
condition is summarized as: 

 

Restarting an ANF unit to a parameter region allowing the 
frequency tracking is a simple task of setting  to a number 
sufficiently less than 1 to open the notch bandwidth, and hence 
moving the ANF to a non degenerative region (convex region) of 
the error surface. Experiments show that a greatly improved 
convergence ability when the thresholding of  scheme is 
incorporated. 

IV. MULTIPLE FREQUENCY TRACKING 
A signal local in the time-frequency plane such as speech can 

have multiple local frequencies. Thus multiple notches are 
required. In our implementation, we employ the same cascading 
architecture as discussed in [10], [18] with some modification. 
These modifications allow us to use a limited number of notch 
elements and reuse them whenever one finishes its tracking. 
Assuming that the tracked signal is sparse in the Time-Frequency 
plane, the approach of using a limited number of notch elements 
makes sense. 

The first modification is the estimation and thresholding of 
the sinusoidal envelop  as part of the non-linear adaptation of the 
ANF coefficients as discussed in Section III. Another modification 
is the organization of the set of ANFs that allow units that have 
reached the end of a time-frequency component to restart without 
“stealing” the signal from the other ANFs that are currently 
tracking viable sinusoids. Consequently, those ANF units that have 
lost tracking should be moved to the end of the cascading chain. 

The estimation of the quality index  also allows us to 
know when the sinusoidal component extracted from an ANF unit 
has enough power to be considered a valid signal (not just noise). 
The value of  indicates whether the signal is a pure sinusoidal 
signal or if it has a certain bandwidth. Thus, at any time step, it is 
possible to identify each sinusoidal component in a mixture of 
local time-frequency signals. 

Fig. 3: Cascading ANF chain 

Parameters: μ=1, =0.99, T =0.01, T =0.9 

Initialization: 
 1, 2… n is uniformly distributed over the spectrum 
 for each ANF i = 1, 2 … n: initialize adaptive parameters [6] 
 i(0) = 0.7, ,i(0) = 0.8, R ,i(0) = R ,i(0) = 1 
   (0) =  (0) = 0 
 ai(0) = 0, flagi(0) = 0 

Computation: 
 for each time t = 1, 2 … N 
 y1(t) = y(t) 
 for each ANF in the cascading chain i = 1, 2 … n  

filter yi(t) by the ANF i  (Section II) 
yi+1(t) = i(t) 
calculate ai(t) (Section III) 
if ai(t) < Ta and i(t) > T  :     flagi(t) = 1  

 end for 

 for each ANF in the cascading chain i = 1, 2 … n  
 if flagi(t) = 1 

Reinitialize:  i(t), ,i(t), R ,i(t), R ,i(t), (t), ,i(t) 
 ai(t), flagi(t) 

Reinitialize i(t) (Section IV) 
Move ANF i to the end of the cascading chain 

 end if 
 end for 
 end for

Table 1: The Time-Frequency tracking algorithm using multiple ANF units 

Finally, when ANF units restart, their initial frequencies can 
be set in one of the two ways: 

Distributing the resetting frequencies between those 
frequencies that are tracking real signals. 
Uniformly distributing the resetting frequencies in the interval 
between [0, 1]. 
The time-frequency tracking algorithm using multiple ANFs is 

illustrated in Fig. 3 and summarized in Table 1. Each unit is 
equipped with a reset flag to indicate the current state of the ANF. 

V. SIMULATION 
A. Tracking a single switching sinusoidal signal 

We test our algorithm with a single-sinusoid signal embedded 
in noise with SNR = 17dB. At one point, we switch off the signal 
(setting the amplitude to be 0) and let the ANF follow. The result is 
depicted in Fig. 4 to show the amplitude tracking capability. In our 
experiment, it initially takes about 20 samples for the amplitude to 
converge to a high value of 1. After the signal is switched off, it 
takes about 30 samples for the amplitude to reach the threshold, 
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which is set to be the noise variance in our case. The MSE of the 
tracked signal compared to the true underlying sinusoidal is 0.0049 
and the tracking MSE of the amplitude is 0.0036. 
B. Tracking of a speech signal 

Speech and Acoustic signals are well-known examples of 
signals local in the time-frequency plane. In our experiments we 
track the spoken word “hello” [16] with 9 ANF units. The 
frequency tracking capability of a dominant component is 
illustrated in Fig. 5. A comparison between the original signal’s 
spectrogram and those of the reconstructed signal and the residual 
error are shown in Fig. 6. 

VI. CONCLUSION 
In this paper, we propose a time-frequency tracking scheme 

utilizing the ANF. It is shown that an ANF can be considered to be 
similar to a causal version of the Gabor Time-Frequency atom. An 
ANF with the special properties of being flexible in allowing time-
varying time-uncertainty (hence allowing time-varying frequency-
uncertainty) and the ability to change the frequency at each 
iteration is developed. The crucial point in adapting to a sinusoidal 
signal that disappears in time is the ability to assign a quality index 
to the tracked signal. This is accomplished by adaptively 
estimating the magnitude (envelope) of the sinusoidal signal and 
thresholding it. The same approach can be scaled to multiple units, 
each adapting to a single time-frequency element. We apply this 
scheme in tracking a speech signal. It is possible to extract 
frequency components of much higher resolution than the 
traditional spectrogram approach. 
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Fig. 4: Amplitude of a pure 
sinusoidal signal ( blue) and of 
the tracked signal (-- blue). The 

red line is the threshold. 

Fig. 5: First major component of 
‘hello’ signal – Evolution of frequency 

(top), of (t) (middle) and of  
(bottom). Red lines indicate 

thresholding values.

a. Original signal b. Reconstructed signal 

 
c. Residual Error d. A dominant component extracted

Fig. 6: Spectrogram of the original signal, the reconstructed signal, the 
residual error, and the first major component extracted. 
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