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ABSTRACT
In this paper  a  novel  approach   to non-uniform 
sampling  is   proposed. Two engineering methods 
are discussed.           
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1. INTRODUTION:
Many  natural   and  man-made  signals  are  analog 
(continuous)in  nature.  To  represent  them  in  
electronic  circuits  as  well  as  computer  memories,  
we  need  to  discretize  the   signals. Thus,  this  
process  of  discretizing  an  analog  signal,  called  
sampling  is  an  important  operation  and  large  
body  of  research  literature  is  generated.  The  
instants  at  which  the  samples  are  obtained  form  
a  stream of  uniform events,  which  can be  depicted  
graphically  as  a  sampling  point  process.
Characteristic  features  of  the  sampled  signals  to  a  
large  extent  depend  on  the  patterns  of  the  point  
process  generated  and  used  for  sampling [Edi].
                             When  sampling  is  mentioned  in  
the  context   of  Digital  Signal  Processing (DSP) , 
usually  it is  assumed  that  the  sampling  considered  
is  deterministic  and  periodic.  The  model  of  
sampling  according  to  which  signal  samples  are  
considered  by  time  intervals  with  a  constant  and  
known  duration  is  the most  popular.  Researchers  
were  interested  in  approximation ( of  analog  
signals  by  discrete  time  signals)  that  is  as  close  
as  possible  using  periodic  sampling. These  efforts  
culminated  in  Whittaker-Kotel’nikov-Nyquist--
Shannon (WKNS)  sampling  theorem [OWH].  This  
theorem  ensures  that  the  original  band-limited  
signal  can  be  recovered  from  the  samples ( 
periodic )  provided  the  sampling rate  is  atleast  
equal  to  ( or  greater  than )  twice  the  highest  
frequency  to  which  the  original  analog  signal  is  
bandlimited.  If  the  sampling  rate  is  below  the  

Nyquist  rate,  reconstruction  error,  called  aliasing  
occurs. Since  a  signal  is  represented  by  finitely  
many   quantization  levels,  there  is  a reconstruction 
error  (of  original  signal  by  the  samples)  due  to  
quantization  noise.  

Motivation for Non-Uniform Sampling:
As  was  established  relatively  long  ago,  the  
application  of   periodic  sampling  alone  does not  
suffice. The periodic  sampling  model  is  not  applicable  
when  fluctuations  in  sampling  instants  cannot  be  
ignored  or  when  signal  samples  can  be  obtained  only  
at  irregular  or  even  random  time  intervals.  Also  
missing  samples (from  an  underlying  uniform  grid)  
are  a  particular  case  of non-uniform  sampling. Studies  
have  indicated  that  randomness  in  sampling  is  not  
always  harmful;  sometimes  random irregularities  in  
sampling  can  even  be  beneficial.  These  irregularities, 
if  properly  introduced,  provide,  for instance,  such  an  
useful  effect  as  the  suppression  of  aliasing. And such 
sampling itself, usually, is considered as non-uniform.                      
Existing  non-uniform  sampling  might  be  realized  
either  as  randomized or  pseudo-randomized  sampling.
The  ultimate  goal  of  various  sampling  schemes  is  to  
decrease the  data  rate ( # of  bits  to  represent  a  
continuous  signal)  while  at  the same time  providing  
sufficient  amount  of   accuracy.  Our  goal  in  this  paper  
is  to  approach  “optimal  sampling”  using  an  
innovative  approach.  Also,     in  research  literature,  
there  are   few  results  devoted  to  non-uniform  
sampling of   non-band-limited  one/two/three/multi  
dimensional  functions. In  the  following  section,  we  
discuss  one  possible  approach  to  reconstruction  of  
non-bandlimited   signals  from  non-uniform  samples.

2. AN INNOVATIVE APPROACH TO NON-
UNIFORM SAMPLING:

                                                                                                 
To  describe  the  approach  presented  in  this  
section,  we  need  the  following  information  from  
real  analysis.

� :SpaceLp
  A  function  f(t)  is  said  
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to  belong  to  
pL  Space  if  

                                             
dttf p )(

< …….(1)                     

The  class  of   functions  in  
2L   is  said  to  

belong  to  Hilbert  space.  Normally,  many  
functions  which  arise  in  practical  
applications  belong  to  Hilbert  space.
  

Innovative  Method  for  Non-Uniform  Sampling:
Consider  a  one  dimensional  function  f(x).  As  in  the  
mathematical  discipline, Real Analysis,  decompose  f(x) 
in  the  following  manner:
                     f(x)  =  g(x) – h(x),   (  g(x)  =  f(x)  for  all  
“x”  such  that  f(x) > 0 ) ….(2)
where  g(x), h(x)  are  non-negative  functions  
corresponding  to the positive  part  and   negative  part  of  
the  function  f(x). 

In the following,  we discuss  the   non-uniform 
sampling of g(x).  The same approach holds true  
for the non-uniform sampling  of  h(x).  

It  is  very  clear  that   once  g(x), h(x)  are  
reconstructed  from  the  samples,  the  function  
f(x)  can  easily  be  reconstructed.

Consider  the  function  g(x).  Let  it  belong  to  
pL     

space   for   some   p1  . To  be specific,  let  the  

function  be  integrable  i.e.  the  function  belongs  to  
1L

( Clearly  all  bounded  amplitude  signals  of  finite  
duration  are  integrable ). In  the  following,  we  discuss  
the  non-uniform  sampling  of  g(x).                            
Normalize  the  function  in  the  following  manner  i.e.   
Define  a  new  function  h(x)  such  that

dxxg

xg
xh

)(
)()(

.                     …………….(3)
It is clear that h(x) is a probability density function.  We 
now sample this  probability density function. Our goal is  
to  design  a  sampling  scheme  such  that h(x)  can  be   
reconstructed  as  accurately  as  possible  from  the  
samples.  The following approximation approaches are 
considered.

The  probability  density  function  h(x)  
has  an  associated  probability  distribution  
function  m(x).  The  problem  of  sampling  
boils  down  to  finding  a  piecewise  linear  

distribution  function that  approximates  (as  
closely  as  possible)  the  distribution  function  
corresponding  to h(x). The approximation 
procedure can be iterative (using a sequence of
approximating rectangles).  In  statistics  
literature,  there  are  well  developed  procedures  
for  approximating  a  density  function (or  
equivalently  the  distribution  function)  with  
respect  to  some  useful/meaningful  metric  
(between  the  original  density  and  the  
approximating  densities).  Those results are 
invoked in the context of non-uniform sampling.

The probability density function h(.)  is 
associated  with  a  random  variable  H.  Our  
goal  is  to  approximate  H  by  a  random  
variable M  as  closely  as  possible.  From  
probability  literature,  Least  Mean  Square  
estimation  approach  is  very  clear.  The  
minimum   mean  square  estimate  of  H  using  
M is  the  conditional  expectation  of  H  with  
respect  to  M.  The formal details  of  this  
approach  follow from  [Pap].

We now propose a new non-uniform sampling approach.
Essential   Idea:  
Consider the probability density function obtained 
through the above procedure.  For  the  purposes  of  
Optimal Sampling (resulting  in  minimum  possible  
reconstruction  error),  it  is  logical  to  include  more  
samples  in  the  region  where  there  is  large  probability  
mass  and  small  number  of  samples  in  the  region  
where  there  is  small  probability  mass. The  constraint  
is  that  the  total number  of  samples  is  given  and  
fixed.

Note:  The  problem  of  approximating  a  probability  
density  function  by  a  set 
of   rectangles  is  well  studied  in  statistics  literature.  
They  are  effectively  transferred  to  arrive  at  the  
notion  of  optimal  sampling.
Two engineering approaches to the problem are 
summarized in the following.  For  the  sake  of   
simplicity,  let  the  support  (domain)  of  the  probability  
density  be  finite (bounded).  It  should  be  noted  that 
both the  engineering  approaches  are  Hybrid Sampling  
approaches  i.e. partly  uniform  sampling  and  partly   
non-uniform  sampling  approaches.
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FIRST  ENGINEERING  APPROACH:

COARSE PARTITION DETERMINATION:  

1.  Consider the   RANGE of the probability density 
function h(x).  Based  on  the  minimum  as  well  as  
maximum  possible  values,  divide  the  range  into  
finitely  many  intervals.  Using these intervals, find the 
corresponding COARSE partitions on the domain. i.e.  
Divide  the  domain  (support)  of  the  probability  
density  function , h(.) into finitely  many  coarse  
partitions. Using  one  of  the  various  numerical  
integration  methods,  compute  the  probability  mass  in  
each  of  the  regions  of  the  course  partition.  

FINE PARTITION DETERMINATION:  

2. Decide  the “smallest  probability  mass ”  in  any  
region  of   the  “fine  partition”.   Using  this  mass,  
divide  each  coarse  partition  into  fine partitions.

SECOND  ENGINEERING  APPROACH:
                                                                                  
Consider the case where the domain of the function is 
bounded. 

1. Based on the  dynamic  range  of  the domain of  
the  function,  divide  it  into  equally  spaced  
samples. This constitutes the coarse partition.  It 
corresponds to uniform sampling.

2. Using  one  of  the  numerical  integration  
techniques,  compute  the area in  each  of  the  
intervals of the  coarse partition.  Since the   
function is normalized,  these  areas  correspond  
to  probability values.  It  is  most  logical  to 
assign, large number of samples to  the  interval  
where  there is  large  probability  mass.  Thus  
the fine partition  leads  to non-uniform sampling
of  the  intervals  in  the  coarse partition.
First  let  us  consider  one  of  the  intervals 
obtained  after  COARSE sampling.  Consider  
the  following  diagram  illustrating  non-uniform 
sampling of  the  function  restricted  to  this  
interval.
Locally the function is approximated by a 
montone   increasing/decreasing function.
Suppose  the  total  area of  the function  

restricted  to  this  interval  be  0p . Suppose, in  
this  interval, the  function is approximated  by  

rectangles  whose  base  is  jb
  and  height  is  

jh
.  

Thus  our  goal  is  to  find,  a  finite  set  of  rectangles  
approximating  the  function  restricted  to  this  interval.  
Thus, we readily have

                        
0

1

pbh
M

j
jj

.                  

Let  
bb j     for    j = 1, 2,…., M

Locally,  on  the  interval,  the  function  is  approximately  
utilizing  a  tangent approximation  to  the  function. Let 
the slope of the tangent (gradient) line be
           m .  Thus, we readily have that

mh1 b  =  2h

bmh2   =  2h           …………(4)

1ii hbmh           for   1 )1(Mi .
Furthermore, we readily have                        

.0
1

phb
M

i
i

  Utilizing the  above  sequence  of  equations,  we  
readily  have

01 2
)1(

pbm
MM

hMb    …….(5)

In  the  above  expression,  the  known  quantities  are  

{ },,1 opmh . We also know the length of the 
interval, say .  This length    is   divided into   M 
smaller units.  Thus   we have  

M
b            …………..(6)

Substituting  for  'b'  ( from equation (6) ),  in  
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equation (5),  we  readily  have

01 2
)1(

pm
M

hM
M

       .

The  above  equation  can  be  explicitly  solved  for  
M  and  the  original  non-negative  function  can  be  
sampled.

Remark:  An  alternative  method  for  computing  M  
( the  number  of  samples  in  an  interval  of  the  
course  partition )  is  derived  in  [Rama]  under  the  
condition  that  the  function  is  strictly   increasing  
over  the  interval.

3. NON-UNIFORM SAMPLING: 
INFORMATION-THEORITIC APPROACH:

                                                                                                       
In  the  following,  we briefly  summarize  the  ideas  
from  source  coding  in  communication  theory.
                                                        
Suppose we have   a   Discrete Memoryless Source
i.e.;   the source output random variables are
Independent, Identically distributed (IID). 

Consider  the case  where  the  source  output random  
variables  are  Discrete i.e.; each  random  variable 

1X   assumes  , say  L  values  with   probabilities 

}.,....,,{ 21 Lppp It  is  well  known from  Source  
Coding  Theorem that  the  average  code  length   is 
greater than or equal to entropy.  Huffman coding 
achieves the lower bound on  average  code  length. 
Now  we  return  to  the  problem  of  sampling.
Consider   the coarse partition of  the  function. It  is  
clear  from  the  second  engineering  approach  that  
the  intervals  in  the  COARSE partition  are  all  of  
the  same  length.  Let the   number of intervals   be   
L and let the corresponding probability masses be   

}.,....,,{ 21 Lqqq

We have a random variable X that is non-negative and 
continuous.   The  support  of  such  a  random  
variable  is  divided  into,  say  L intervals  i.e.;

 Probability { 0 < X  <  1x   }  =  1q ,

Probability { 1x  X < 2x  } =  2q , and so on till

 Probability{  1Lx  X  <  Lx  } = Lq .  

It is clear that },....,,{ 21 Lqqq  are  known.

Also,  unlike Huffman coding, we want to assign 
large number of bits to the interval with large 
probability mass. The total number of samples is 
fixed. We are interested in the following 
question.

Q:  Is  there  a  Lower Bound  on  the  number  of    
bits  that  can  be  used  to represent/approximate 
the   Continuous Random Variable.

We utilize the following idea to   answer the 
above question. Consider  the  continuous  
random  variable  on the  Partition  of values  
assumed  by  it.  There are L such  intervals  with 
probabilities :Prob{ )1(ix  < X < ix  } = iq .

Define  a  Discrete  Random  Variable, Y  associated 
with  X  i.e.  Y  assumes  only  L  values.

We  want to assign  more  symbols  to  the  
value of  Y  with  LARGER  probability  
(unlike  HUFFMAN CODING).
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