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Abstract—This paper proposes a systematic approach for the design
of a general class of analog infinite-impulse-response (IIR) filters, which
includes all well-known classical analog filters as a special case. All
specifications including the conventional ones and also filter flatness
degrees are explicitly incorporated into design process. Several numerical
examples are presented to demonstrate the efficiency and flexibility of
the proposed method.

I. INTRODUCTION

Analog filters are indispensable parts in interface with the analog

real world. Analog and digital circuits are often implemented together

on the same integrated circuit chip [1], [3], [4], [12], [13]. Also,

the most popular approach in digital infinite-impulse-response (IIR)

filters design is based on transformation methods from analog coun-

terpart [2], [9], [10]. There is no doubt that design of analog filters

is a fundamental problem in signal processing, communications, and

control.

In contrast to digital IIR filter design, the classical design of

analog IIR filters looks rather complete, so there is not much further

development. The Chebyshev min-max approximation works so well.

Each classical filter is optimal in some sense. Given the filter order,

the stop-band ripple and the cut-off frequency the Chebyshev filter

has the least peak ripple in the pass-band among all pole filters [9].

On the other hand, given the filter order, the pass-band ripple and

the cut-off frequency the inverse Chebyshev filter has the least peak

ripple in the stop-band among the maximally flat (at pass-band) filters

[9]. Finally, given three out of four design parameters: the filter order,

the pass-band ripple, the transition band width, the stop-band ripple,

the elliptic (Cauer) filter minimizes the only one remaining design

parameter.

Because of the nature of the minimax optimality, all classical filters

however are unable to satisfy additional regularity or flatness condi-

tions, which are desirable in many practical applications. For instance,

Chebyshev filters are maximally flat at the stop-band (like other all-

pole filters) but cannot be flat for any degree at the pass-band. The

inverse Chebyshev filters are maximally flat (at pass-band) but cannot

be flat for any degree at the stop-band. Elliptic (Cauer) filters cannot

be flat for any degree at the both pass-band and stop-band. In our

previous work [6], an alternative design to Chebyshev and inverse

Chebyshev filters has been proposed. The designed filters have the

same structure as of Chebyshev and inverse Chebyshev ones but they

possess additional flatness for any degree at either pass-band or stop-

band. The design is based on a new semi-definite programming (SDP)

formulation, which also includes Chebyshev and inverse Chebyshev

filer designs as a special case. This paper is a further development of

[6], where a complete formulation for problem of designing general

IIR flat filters is proposed and tested in several examples.

The rest of the paper is structured as follows. Section 2 describes

mathematical tools that will be used throughout the paper. Section

3 presents the reduced order SDP formulation for generalized el-

liptic filters. In section 4, various numerical examples are given to

demonstrate the viability of the proposed method. Finally, concluding

remarks are presented in Section 5.

The following notation is used in the paper. Vectors and matrices

will be represented by italicized bold lower case and upper case

letters, respectively. The superscript “T” denotes the transpose (without

conjugation) whereas the superscript “H” denotes Hermitian transpose.

Symbols R and C are used to denote real and complex spaces. Real

part and imaginary part of a complex number w are denoted by �(w)
and �(w), respectively. The round-down and the round-up operations

to the closest integers of a number a are 〈XXX,YYY 〉 respectively denoted

by �a� and �a	. The standard notation XXX ≥ 0 defines a positive

semi-definite Hermitian matrix, while 〈XXX,YYY 〉 is the inner product of

two matrices XXX and YYY , i.e. 〈XXX,YYY 〉 = Trace(XXXYYY ). For a given set

C ⊂ R
n its convex hull (conic hull), denoted by conv(C) (cone(C)),

is the smallest convex set (cone) in R
n that contains C.

II. OPTIMIZATION TOOL: SDP

For ϕϕϕn(ω) = (1, ω, ω2, ..., ωn)T , a polynomial curve Ca,b ⊂
R

n+1 is defined as Ca,b := {ϕϕϕn(ω) : ω ∈ [a, b]} ⊂ R
n+1, and its

polar C∗
a,b is given by C∗

a,b = {uuu ∈ R
n+1 : 〈uuu,vvv〉 ≥ 0 ∀ v ∈ Ca,b}.

For an integer k define the linear matrix valued functions

TTT k(yyy) =

⎡
⎢⎢⎢⎣

y0 y1 . . . yk

y1 y2 . . . yk+1

...
...

. . .
...

yk yk+1 . . . y2k

⎤
⎥⎥⎥⎦ ,

TTT 1k(yyy) =

⎡
⎢⎢⎢⎣

y1 y2 . . . yk+1

y2 y3 . . . yk+2

...
...

. . .
...

yk+1 yk+2 . . . y2k+1

⎤
⎥⎥⎥⎦ .

Theorem 1 ( [16]): The conic hull cone(Ca,b), b < +∞ of

the polynomial curve Ca,b is fully characterized by LMIs: yyy =
(y0, y1, ..., yn)T ∈ cone(Ca,b) if and only if it satisfies the linear

matrix inequalities (LMIs)

TTT �n/2�(yyy) ≥ 0, bTTT �n/2�(yyy) ≥ TTT 1�n/2�(yyy) ≥ aTTT �n/2�(yyy) (1)

while yyy = (y0, y1, ..., yn)T ∈ conv(Ca,b) if and only if it satisfies

the LMIs (1) with y0 = 1.

The conic hull cone(Ca,+∞) is fully characterized by LMIs: yyy ∈
cone(Ca,+∞) if and only if it satisfies the LMIs

TTT �n/2�(yyy) ≥ 0, TTT 1�n/2�(yyy) ≥ aTTT �n/2�(yyy). (2)

while yyy ∈ conv(Ca,+∞) if and only if it satisfies the LMIs (1) with

y0 = 1.

Note that for n even, by definition, TTT 1�n/2�(yyy) is a matrix function

of (y0, y1, . . . , yn+1) and accordingly LMIs (1) are understood for

some yn+1 ∈ R.

In the next section, we will see that any filter design problem can

be easily reformulated to the following semi-infinite programming
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(SIP)

min
xxx

xxxTQQQxxx + cccTxxx s.t. AAAixxx + dddi ∈ C∗
i , i = 1, 2, . . . , m, (3)

where matrices AAAi and QQQ > 0 are given and Ci = cone(Cai,bi) for

some ai, bi, i = 1, 2, ..., m.

In general, SIP (3) is intractable optimization. However, by Theorem

1, its dual

max
yyyi∈Ci

min
xxx

[
xxxTQQQxxx + cccccccccTxxx −

m∑
i=1

(AAAixxx + dddi)
Tyyyi

]

is in fact the following convex semi-definite programming (SDP) of

tractable optimization:

max
yyyi,ν

−
m∑

i=1

yyyT
i dddi − ν :

⎡
⎢⎢⎢⎣

ν cccT −
m∑

i=1

yyyT
i AAAi

ccc −
m∑

i=1

AAAT
i yyyi 4QQQ

⎤
⎥⎥⎥⎦ ≥ 0,

(1) for ai ← a, bi ← b, i = 1, . . . , m,
(4)

The optimal solution xxx∗ of the intractable programm (3) is directly

retrieved from the optimal solution yyy∗
i of the tractable programm

(4) involving just (n + 1)m scalar variables by the formula xxx∗ =

− 1
2
QQQ−1(ccc −

m∑
i=1

AAAT
i yyy∗

i ).

III. ELLIPTIC FLAT FILTER DESIGN

Generally, the transfer function of an elliptic (Cauer) filter takes the

form [11] |T (jω)|2 = (1 + ε2R2
n(ω)−1 with the n-th-order rational

Chebyshev function Rn(ω). As briefly mentioned, this specialized

form is enough for its optimality in any of four design parameters

(order, pass-band and stop-band ripples, transition bandwidth) given

the remained three others. Its drawback is non-regularity or non-

flatness for any degree at both pass-band and stop-band, which are

actually desirable in certain applications [14], [17]. Our main target

is to resolve this drawback by considering it in more flexible class

beyond the rational Chebyshev functions. Namely,

|T (jω)|2 =
1

1 + H2(ω)
=

D2(ω)

D2(ω) + N2(ω)
, (5)

where H(ω) = N(ω)/D(ω) is a rational (structure-free) function,

i.e. N(ω) and D(ω) are polynomials in ω. Knowing D2(ω) and

N2(ω) the stable filter T (jω) can be obtained through minimal phase

factorization [8].

Let n be the Macmillan order of T (jω). Since |T (jω)|2 is a function

of ω2 with |T (0)|2 �= 0 (for low pass filters), N(ω) and D(ω) must

take the following form

(N(ω), D(ω) = (ωñ

�n/2�∑
i=0

niω
2i,

�n/2�∑
i=0

diω
2i), (6)

where ñ = �n/2	 − �n/2�, which is either 1 or 0.

Typically, the following constraints are imposed on the filter:

• Peak ripples in the pass-band and stop-band

1 − δ ≤ 1

1 + H2(ω)
, ∀ω ∈ [0, ωp], (7)

1

1 + H2(ω)
≤ ε, ∀ω ∈ [ωs, +∞), (8)

with the transition bandwidth Δ = ωs − ωp;

• k-th-order flatness at the pass-band

d2i|T (jω)|2
dω2i |ω=0 = 1

⇔ diH(ω)

dωi |ω=0 = 0, i = 0, 2, . . . , 2(k − 1)

which is equivalent to

n0 = n1 = · · · = nk−1 = 0, d0 �= 0. (9)

The inverse Chebyshev filter |T (jω)|2 = 1/(1 +
(ε2T 2

n(ωS/ω))−1) with the n-th order Chebyshev polynomial

Tn(.) is maximally flat (k = n) at the pass-band.

• �-th flatness at the stop-band

di|T (jω)|2
∂ωi

|ω=+∞ = 0, i = 0, 2, . . . , 2(k − 1),

which is equivalent to

dn = dn−1 = · · · = dn−�+1 = 0, n0 �= 0 (10)

The Chebyshev filter |T (jω)|2 = (1+ ε2Tn(ω))2 with the n-th

order Chebyshev polynomial Tn(.) is maximally flat (� = n) at

the stop-band. The Butterworth filter is maximally flat at both

pass-band and stop-band, while the elliptic filter is not flat in

any degree at the pass-band and stop-band.

The above design constraints determine the set of feasible filters.

Among these feasible filters, the “best” one is defined by the objective

function. In this paper, we use the objective function that minimizes

either the aggregated deviation of |T (jω)|2 from 1 in the pass-band:

Σp =

∫ ωp

0

[
1 − 1

1 + H2(ω)

]
dω, (11)

or the aggregation of |T (jω)|2 in the stopband:

Σs =

∫ +∞

ωs

1

1 + H2(ω)
dω. (12)

As both Σp and Σs cannot be expressed by closed form formula, we

must find good approximations for Σp and Σs. With the pass-band

constraint (7), equation (11) is rewritten as

(1 − δ)

∫ ωp

0

H2(ω)dω ≤ Σp ≤
∫ ωp

0

H2(ω)dω (13)

Therefore, a sensible approximation of Σp is

Σp ≈ Σ̄p =

∫ ωp

0

, H2(ω)dω (14)

because minimizing (14) also minimizes the gap between lower

bound and upper bound of Σp.

Next, as H(ω) is a rational function, there is still no analytical

expression for the integral in (14). Following the strategy in [5], we

can replace the minimizer of Σ̄p by the following quadratic objective

function

min
nnn,ddd

∫ ωp

0

[
N2(ω) + γ

[
D(ω) − 1

]2]
dω (15)

where the scalar γ is a predefined small weight. For simplicity, in

this paper we focus only on minimizing Σp. The quadratic objective

function for the minimization of Σs can be effectively replaced in a

similar manner by

min
nnn,ddd

∫ 1/ωs

0

[
D2(Ω) + γ

[
N(Ω) − 1

]2]
dΩ,

where the variable Ω = 1/ω is used to flip the magnitude response

|T (jω)|2.
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Now the design of a generalized elliptic filter becomes the follow-

ing optimization problem

min
nnn,ddd

∫ ωp

0

[
N2(ω) + γ

[
D(ω) − 1

]2]
dω : (9), (10), (16a)

−
√

δ

1 − δ
≤ N(ω)

D(ω)
≤

√
δ

1 − δ
, ∀ω ∈ [0, ωp] (16b)

−
√

ε

1 − ε
≤ D(ω)

N(ω)
≤

√
ε

1 − ε
, ∀ω ∈ [ωs, +∞) (16c)

By defining

Q̄̄Q̄Q =

∫ ωp

0

ϕϕϕT
n (ω)ϕϕϕn(ω)dω, c̄̄c̄c =

∫ ωp

0

ϕϕϕn(ω)dω (17a)

xxx = [nnnT , dddT ]T , Δp =

√
δ

1 − δ
, Δs =

√
ε

1 − ε
(17b)

BBB1 =

[
000

(ñ+2� k−ñ
2 �)×(�n/2�+1−� k−ñ

2 �)
diag

(
[1, 0, 1, . . . , 0, 1]

)
]

(17c)

⊂ R
(n+1)×(�n/2�+1−� k−ñ

2 �)
(17d)

BBB2 =

[
diag

(
[1, 0, 1, . . . , 0, 1]

)
000

(ñ+2� �−ñ
2 �)×(�n/2�+1−� �−ñ

2 �)

]
(17e)

⊂ R
(n+1)×(�n/2�+1−� �−ñ

2 �)
(17f)

QQQ = [BBB1 000]T Q̄̄Q̄Q[BBB1 − 000] + γ[000 BBB2]
T Q̄̄Q̄Q[000 BBB2] (17g)

ccc = −2γ[000 BBB2]
T c̄̄c̄c (17h)

AAA1 =
[
BBB1 ΔpBBB2

]
, AAA2 =

[ −BBB1 ΔpBBB2

]
, (17i)

AAA3 =
[
ΔsBBB1 BBB2

]
, AAA4 =

[
ΔsBBB1 −BBB2

]
, (17j)

Ca1,b1 = Ca2,b2 = C0,ωp , Ca3,b3 = Ca4,b4 = Cωs,+∞ (17k)

the optimization problem (16) is rewritten in the form of (3), which

is solved via SDP (4).

In contrast to classical design methods, this optimization approach

offers several advantages. First, we have direct control on design

parameters δ, ε, ωp, ωs. Second, as N(ω) and D(ω) are structure-

free, the proposed approach is more general than the classical one so

that other requirements such as flatness can be easily incorporated.

Furthermore, the classical elliptic filter can also be easily designed

by the proposed approach.

According to (5) and (6), it is obvious that flatness of even order

is automatically satisfied for n even. More precisely, a (2k − 1)-th

order flatness filter of even order will automatically satisfy the 2k-

order flatness condition. Similarly, a 2k-th order flat filter of odd

order is also a (2k + 1)-th order flat.

In addition, if we set the maximal flatness at ω = 0 or ω = +∞,

we will obtain generalizations of classical Chebyshev filter, inverse

Chebyshev filter, and Butterworth filter. The classical Elliptic filter is

optimal in terms of transition bandwidth, i.e. given δp, δs, and ωp,

the stop-band edge ωs of the classical Elliptic filter is the smallest

among all analog filters of the same order. Therefore, with n, δp, δs,

and ωp given, we can use the proposed method to derive the classical

Elliptic filter if we set ωs in (16) to the optimum value. The optimum

value of ωs can be obtained by bisection method on ωs satisfying

(16).

Likewise, the classical Chebyshev filter is maximally flat in the pass-

band and optimum in terms of stop-band attenuation. Therefore, with

n, δp, ωp, and ωs given, we can use the proposed method to derive

the classical Elliptic filter if we set δs in (16) to the smallest possible

value. This optimum value can also be obtained by bisection method

on δs satisfying (16). Derivation of classical inverse Chebyshev and

Butterworth filters using proposed method is similar.

IV. NUMERICAL EXAMPLES

In this section, we demonstrate the viability of the proposed method

in designing of several analog filters. All filters are required to meet

specifications given as

ωp = 1[rad/s], ωs = 1.25[rad/s], δp = 3×10−3, δs = 4×10−3.
(18)

The resultant SDPs are solved on a standard personal computer

using SeDuMi, a Matlab-based general purpose SDP solver [15],

and Yalmip, a Matlab toolbox for rapid prototyping of optimization

problems [7].

In order to fulfill the predefined specifications, it requires a

Butterworth filter of order 26 or a Chebyshev filter of order 10.

The necessary order for an elliptic filter is only 6, which is a

significant improvement. Recall that the classical elliptic filter is
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Fig. 1. Bode plot of the 6th-order generalized elliptic filter

optimum in the sense that given filter order and the peak ripples the

transition bandwidth is minimum. Thus, the elliptic filter is usually

over-designed in terms of transition bandwidth, i.e. the bandwidth is

usually less than the required value as can be seen clearly in Fig. 1.

The proposed method is more flexible in that it allows appropriate

regularity requirements to be imposed on the elliptic filter while other

specifications are still satisfied. In this generalized elliptic filter design

example, we can set the regularity of the filter to 3 at either 0 or +∞,

as shown in Fig. 2 and Fig. 3.
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Elliptic filter
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Proposed 3−regular filter

Fig. 2. Passband details comparison

On the other hand, if we take regularity as a new design spec-

ification, it must be traded-off with the conventional ones in (18).

For example, higher regularity requires higher peak pass-band ripple
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provided that other specifications remain the same. Figure 4 shows

the trade-off between regularity and peak pass-band ripple for the

6-order generalized elliptic filter.
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Fig. 4. Peak passband ripple versus regularity

The flexibility of the proposed method and the importance of

regularity setting is further demonstrated in the design of the gener-

alizations for the remaining classical analog filters. By setting the

regularity in the pass-band, in the stop-band, and in both bands

to maximum values, the proposed method subsequently yields the

generalizations of Chebyshev filter, inverse Chebyshev filter, and

Butterworth filter in Fig. 5-Fig. 6.

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (d

B
)

10
−1

10
0

10
1

−900

−720

−540

−360

−180

0

P
ha

se
 (d

eg
)

Bode Diagram

Frequency  (rad/sec)

Chebyshev filter
Proposed filter

Fig. 5. Bode plot of the 10th-order generalized Chebyshev filter
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V. CONCLUSION

We proposed systematic approach to design generalized Elliptic

filters. The attractive feature of the method is that regularity condition

is easily incorporated. Thus, the proposed method is more general and

more flexibility than classical methods as all classical filters can be

obtained as special cases. Several numerical examples are presented

to demonstrate the viability of the proposed method.
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