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ABSTRACT

In this paper we consider the rational canonical form of arbitrary
polyphase matrices and use it to derive a simple implementation of
paraunitary filter banks (PUFBs) based on a cascade of elementary
building blocks. Furthermore, this decomposition is shown to be
easily extendable to include a large class of perfect reconstruction
filter banks (PRFBs) and can be especially useful for deriving the
initial condition of PUFB design algorithms.

Index Terms— rational canonical form, polyphase matrices,
paraunitary filter banks

1. INTRODUCTION
The polyphase matrix of an M-channel causal finite impulse
response (FIR) filter bank may be written as

K
H(z) = ZH,{Z%
=0

where z = r¢/” and Hy is a scalar M-by-M matrix. The matrix H(z)
resides within the ring of M-by-M matrices with Laurent
polynomial entries, denoted by M(N, C[z, z'']), with C the field of
complex numbers. The rational canonical form of this matrix is
not guaranteed to exist within the Laurent polynomial ring C[z,z]
since this ring is not a field. In this paper we will show that the
rational canonical form of H(z) does indeed exist as another matrix
in the ring M(%V, C[z, z']). If H(z) corresponds to the polyphase
matrix of a paraunitary filter bank (PUFB), then the algorithm for
computing the rational canonical form illustrated in this paper may
be used to implement H(z) as a particularly simple product of
elementary building blocks. Furthermore, this new decomposition
of H(z) may be used to represent a large class of perfect
reconstruction filter banks (PRFBs) as well and can be used to
provide initial conditions for PUFB design algorithms.

2. EXISTENCE OF RATIONAL CANONICAL FORM
The rational canonical form of a polyphase matrix H(z) over the
ring C[z, z'] exists as a matrix over the field K. K denotes the
field of rational functions p(z)/q(z), q(z)#0, with coefficients in C.
The field K is the field of fractions of the ring C[z, z']. This field
is also denoted C(z). Any matrix H(z) in M(N, C[z, z'']) is similar
to a matrix in M(¥, K) in rational canonical form. In other words,
there exists an invertible M-by-M matrix P(z) such that P(z)
"H(z)P(z) is in rational canonical form. A matrix R(z) in rational
canonical form is a matrix such as

clz o - o0
R(Z)E 0 Cz.(z) O
0 0 0 Cyul2)
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where
7170(2)/‘10(2)

—Pl(z)/%(z)

Ci(Z)E . EM(N,K).

0 0 1 _pnfl(z)/qnfl(z)
The matrix Cj(z) is the companion matrix corresponding to the
invariant factor a;(x) of H(z). The invariant factors a;(x) may be
made unique by requiring that pi(z) and g¢i(z) are monic
polynomials.

The characteristic polynomial of H(z) is a polynomial in the
indeterminant x with coefficients in the Laurent polynomial ring
C[z, z'], namely c(x) = det[xI — H(z)]. The invariant factors of
R(z) are the monic factors of c¢(x) [1]. The invariant factors of
H(z) and R(z) are the same, namely the monic polynomials a;(x).

The important contribution of this section is the following
claim.

Claim: The rational canonical form of the polyphase matrix H(z)
is a matrix with entries in the ring C[z, z'']. In other words, it is an
element in the ring M(¥N, C|z, 1.

Proof: Since C is a field, the ring C[z, z'] is a unique factorization
domain (UFD). The field K = C(z) is the field of fractions of

C[z, z'']. The characteristic polynomial ¢(x) is in the ring

Clz, z'l[x]. By Gauss’ Lemma, since c(x) can be factored in
C(2)[x], then it is reducible in C[z, z'][x]. Consequently, the
invariant factors of a matrix H(z) in M, C[z, z']) are
polynomials in the ring C[z, z'] and therefore the rational
canonical form R(z) is a matrix in the ring M(N, C[z, z'']).

3. AN ALTERNATIVE FORM FOR R(2)
Claim: The rational canonical form R(z) of a polyphase matrix
H(z) can be written as a Laurent polynomial with matrix
coefficients. In other words,

Gz o -~ 0
R(z) = 0 sz(z) .. 0
0 0 0 Cyul2)

=R, +R;z"+Ryz 2+ + Rz V.

Proof: The claim follows once one proves that the ring of matrices
with Laurent polynomial entries is isomorphic to the ring of
Laurent polynomials with matrix coefficients. It is sufficient to
prove that [2],
M(N, C[x])= M(N, C)[x]

which implies that

M(N, C[z,zilDE M(N, C)[z,z’l] .
The proof is omitted for brevity.
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4. COMPUTATION
To compute the rational canonical form R(z) of the M-by-M matrix
H(z), one approach is to diagonalize the matrix xI — H(z) [1]. The
invariant factors of H(z) will then appear on the diagonal. The
invariant factors should be monic and satisfy the divisibility
condition a;(x) divides a;(x). The direct sum of the companion
matrices associated with each invariant factor yields the matrix
R(z) in rational canonical form. By keeping track of the row
operations used to diagonalize xI — H(z) one can also construct the
matrix P(z) such that P(z) 'H(z)P(z) = R(z).
The following three elementary row and column operations
can be used to diagonalize xI — H(z):
1. interchange two rows or columns
2. add a multiple in K[x] of one row or column to another,
e.g. add p(x) times the jth row to the ith row
3. multiply any row or column by a unit in K[x], i.e. by a
nonzero element in K.
The matrix P(z) can also be computed systematically [1]. First, let
dy,...,d, denote the degrees of the monic nonconstant polynomials
ay(x),...,an(x) appearing on the diagonal. Begin with the matrix
S = I, the identity matrix. For each row operation used to
diagonalize xI — H(z), change the matrix S as follows.
1. If the ith and jth rows were interchanged, then
interchange the ith and jth columns of S,
2. if Row; + p(x)Row; = Row;, then subtract the product of
the matrix p(H(z)) times the ith column of S from the
Jjth column of S, i.e. Col; — p(H(z))Col; > Col;,
3. if the ith row is multiplied by a unit, u, then divide the
ith column of S by u.
Once the matrix xI — H(z) has been diagonalized, the first M — m
columns of S will be zero. Then for each i = 1,...,m multiply the
ith nonzero column of S successively by H(z)’ = I, H(z), H(z)%...,
H(z)™', where d; is the degree of a;(x). Use the resulting column
vectors in this order as the next d; columns of a matrix P(z). Then
P(z) 'H2)P(2) = R(2).

5. APPLICATION TO PUFBS

In this section we consider the example of paraunitary filter banks.
The analysis (or synthesis) polyphase matrix of a normalized
PUFB satisfies the condition,

H(z)H(z)" =1
Furthermore, M-channel PUFBs may be decomposed into a
product of elementary building blocks as in [3],

H(0)=G,A(0)--GA@QI (1)
where L is the Smith-McMillan degree of H(w), Gy and Q are
M-by-M orthogonal matrices, A(w) = diag(I, ¢’“I) for M even, and
J = diag(*1,...,£1). Each matrix Gy and Q can be written as the
product of 2M(M — 1) Givens rotation matrices in the sequence,
Gk = {BM-z,M-l}"'{Bl,M-l "'Blz}{Bn.M-l "'B01}~ (2)

The matrix Bjj corresponds to a Givens rotation matrix with cos(6,)
in the ith row and ith column, sin(#,) in position (i, j), -sin(#,) in
position (j, i), and cos(6,) in position (j, j) with 1 <n <'2M(M - 1).

for z = e/®.

51.Case L=1,M=2
For a simple example, let M =2 and L = 1 in (1) above. Without
loss of generality set QJ = 1. Then the polyphase matrix is

OO v ] O RS

Table 1 lists the steps to compute the rational canonical form of
H(z) and the change of basis matrix P(z). In this table, R; denotes

the ith row, and Cj denotes the jth

column.

Table 1. Sample Rational Canonical Form Computations

Steps to compute R(z)

Steps to compute P(z)

Step 1: Form the matrix
xI - H(z)

Step 1: Form the matrix
S=1

Step 2: —sin(O)R; 2 R,
(x —cos(0))R, > R,

Step 2: -(1/sin(9))C, > C),
(H(Z) — COS(H)I)C[ + Cz%C]

Step 3: -R1 + R2 > R2

Step 3: sin(A)C, > C,

Step 4: (1/sin(0))R, > R,

Step 4: (z/sin(0))C, > C,,
-C1 2 C

Step 5: z'sin(O)R, > R,
(% = xcos(O)(1+z) + 2 HR, >
R

Step 5: C, — (H(z)* —
cos(OHE)(1 +z)+2'DC, >
G

Step 6: -R, 2 R,

Step 6: (H(z) — cos(O)C, >
C,, sin(0)z'C, > G,

Step 7: Rl + R2 > R]

Step 7: (H(z)* — cos(9)H(z)(1 +
ZH+7'DC D> ¢

Step 8: (1/(x —cos(0))R; = R,
(1/(z"'sin(0))R, > R,

Step 8: Now,

5|0 0
o —2z7"sin(9)

Also,m=1,d,=2.

Step 9: (1/(x* —xcos(6)(1 + 2
+zHR, D> R,

Step 9: Form the matrix,

P(z)=[1Cc, H(z)C,]

The result of these computations i

R(:)= [? 005(1;)61 )} i

S

:(1) cog(a)}z{g co_s(lﬂ)}

P(z)= —zsin(e)zzil[(l) j*‘] ZZIS(Z)J "’

= cot(ﬁ

A %zcsc(af[

zcsc(e)) (ﬂ

Furthermore, P(z) "H(z)P(z) = R(2).
Using the rational canonical form of H(z), one can write

H(z) = Hi(z) + z'Hy(z) where
matrices defined as
B cos(ﬁ)
Hy (Z) - [cos(ﬁ)cot(
H, (Z) = {

csc (0)(005

cos(é’)

Hi(z) and Hy(z) are rank one
0)} [(1 —zfl) z! tan(@)],

(o7 7Zﬂ [1 o]

Now for M = 2, the decomposition of PUFBs given in (1) can be

rewritten as,

6. SIMPLE IMPLEME

Using the decomposition Py(2)Ri(z)Pi(z)! =

NTATION OF PUFBS
GiA(z) for each

building block of a 2-by-2 polyphase matrix in (1), a two channel
PUFB may be constructed as a cascade of the lattice sections
shown in Fig. 1. Here vy, v, are the input signals and u,, u, are the
output signals. This lattice structure lends itself easily to an
implementation in hardware.
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Fig. 1. Lattice Implementation of PUFB

Similar lattice structures can be derived for PUFBs with
greater than M = 2 channels using (2), the rational canonical form
for (3) and the rational canonical form for a scalar Givens rotation
matrix. Using the same computational algorithm described in
Section 4, a scalar Givens rotation matrix can be written in rational

canonical form with PRP' = G as,
0 -1 005(9) sin(&) 0 sin(9)
= , G= , P= R
{1 2COS(9)J {— sin(6) cos(ﬁ)} L cos(@)}

= —cot(B) 1
| esc(d) of
6.1. Case M =3

Using (2), a 3-by-3 paraunitary polyphase matrix may be
written as,

®)

H(Z) =B, (91 )Boz (92 )Bm (93 )A(z),
with A(z) = diag(1, z', z'). A lattice implementation can be
constructed from the following matrices derived using (4) and (5),

10 0 10 0 1 0 0
B|2(9|)= 00 sm(H]) -1 0 7cot(0|) 1],
0 cos(&l ) 0 1 2cos(8)]0 csc(&l ) 0
1

0 0 sin()J0 0 - —cot(6y) 0 1
Bu@)=/0 1 0 |0 1 0 0 1o
10 005(02) 10 2005(672) csc(Bz) 0 0

0 0 0o z!

0 sin(g;) 0][1 0 070 -z 0|[-cot(@;) 1 0
B0|(93)A(Z)—I:1 COS(H3) 0‘|{0 z! 0} 1 005(03)1+271) 0 {zcsc(@) 0 O]A
10 0 1

Similar matrices and lattice structures may be derived using (2),
(4), and (5) for paraunitary polyphase matrices with M = 4, or
larger. Those examples will not be presented here to conserve
space.

7. PERFECT RECONSTRUCTION FILTER BANKS
Consider the case M = 2 again. A perfect reconstruction filter
bank satisfies the property that H(z)E(z) = cz"I, where H(z) is the
analysis polyphase matrix and E(z) is the synthesis polyphase
matrix, ¢ # 0 and m is an integer. A PUFB is the special case
where E(z) = H(z). A perfect reconstruction filter bank may be
constructed by parameterizing the rational canonical form R(z) and
the conjugation matrix P(z) independently using one angle for
each. For example, the system with

H(Z):[o sin(gl):”:O -1 i||:—cos(91) sin(ﬁ,)“:l ol}sc(al)

1 cos(g)||1 2cos(8,) 1 0 |0 z
ﬂd{éﬂﬁ 2gmhfﬁ)ﬂﬁﬁﬂ)mﬁqm@) ©)

is PR since E(z) = H(z)". Note that for the special case when 0, =
6>, H(z) is paraunitary. Therefore, this set of PRFBs constructed
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using two parameters for every building block includes the set of
PUFBs as a proper subset.

8. APPLICATION TO PUFB DESIGN

Since the space of PRFBs is larger than and includes the space of
PUFBs, one can design a PUFB by searching over the space of
PRFBs for an optimal solution and then choosing the paraunitary
filter bank closest to it for an initial condition in a strictly PUFB
search. The advantage of this approach is that if the initial
condition of a strictly PUFB search is closer to the optimal
solution, then the more likely it is that a nonlinear optimization
program will settle on the global solution instead of a local
minimum. Consider the following PUFB design algorithm which
minimizes the Mean Square Error (MSE), {, between a desired
polyphase matrix, D(w), and an approximation H(w).

8.1. PUFB Design Algorithm
Step 1. Form the MSE objective function,

IW o)p(w)

where || . ||r denotes the Frobenius norm, W(w) is a scalar
weighting function set equal to one, P(w) is an M-by-M perfect
reconstruction polyphase matrix as described in Section 7, and
D(w) is the desired or ideal polyphase matrix.
Step 2. With the angles 6; as free parameters, minimize ¢ over all
P(w) using a nonlinear optimization program such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. Call the optimal
solution, P*(w).
Step 3. Compute the paraunitary polyphase matrix H'(w),
parameterized as in (1) and (2), which minimizes
MSE(P*(w), H(w)) over all H(w).
Step 4. Use H'(w) as the initial starting point in a nonlinear
optimization program which minimizes MSE(D(w), H(®)) over all
H(w). Call this optimal solution H*(w). Denote
MSE(D(w), H*(w)) by MSE,.

The advantage of using the proposed PUFB design algorithm is
that it satisfies the following property.
Claim: Define MSE,; = MSE(D(w), H'(w)). Using the above filter
bank design algorithm,

MSE, <MSE, +&,
MSE(H'(0),H' (0))<2-MSE, + &

where ¢ is a small nonnegative constant.

Proof: Since the MSE is a norm on the space of polyphase
matrices, by the triangle inequality,

iﬂMw pm<_ﬂp
0

L
2z
0
Since P*(w) is the optimal solution over a larger set of matrices

than H*(w),

2z
iJ‘"D(a))— dwsﬁ'["])
0

As aresult,

MSE(D(w), ~P(o) do

da)+

P (w)- H'(a)er do.



27 2

= [Ip(@)-1(0), do <+ [[plo)-1 (@ do+
0 0
2z

L
2r
0

or in other words, MSE; < MSE, + ¢. The proof that
MSE(H'(w), H*(w)) < 2-MSE, + ¢ is similar.

P () H'(w“i da,

8.2. Case M =4
For M = 4, a PR polyphase matrix, P(z), which can be used to
design a PUFB using the previously described algorithm is
constructed as,

P(z)= Gl(gl"“’alz)A(z)z

T23 (91 > 92 )TIS (93 > 94 )TIZ (65 > 96 )T03 (67 > 98 )TOZ (99 > 610 )T()l (91 1° 912 )A (Z)
The inverse of P(z) is given by,
P(Z)il = A(Z)H By, (91 16 )Boz (99 .60 )Boz(ew o )B]2 (05’66 )BB (93’ o, )st (01 .0, )
with the matrices Bj; as in (5) and (2) except with two angle
parameters as in (6). The system so described is PR since
P(z)P(z)" =1. The matrix Ta; is,

100 o Jto o offto o o0
o1t o o0 o1 0 0f0 1 0 0
2710 0 0 sin(g)]|0 0 2cos(8,) 1|0 0 —cot(g) 1f
0 0 1 cos(@)lo 0 -1 0]0 0 csc(6) o

The matrices T3, Tz, Tos, Toz, To; are constructed similarly using
two angle parameters for each. Note that if 8; = ;. for i odd, then
P(z) is paraunitary.

9. RESULTS

The PUFB design algorithm was used to design a finite impulse
response PU approximation to an ideal principal component filter
bank (PCFB). PCFBs are described in detail in [4], [5], and [6]. A
PCFB is the solution to the problem of finding optimal Q-by-M
and M-by-Q analysis and synthesis polyphase matrices, with

O < M, such that the time-averaged mean squared error between
the vector input to the filter bank and the vector output is
minimized. An ideal PCFB corresponding to an infinite order PU
filter bank has channel filters with brick-wall responses. This ideal
filter bank can be approximated using a FIR PU filter bank by
minimizing the mean squared Frobenius norm error between the
desired polyphase matrix of the ideal PCFB, D(w), and the FIR PU
synthesis polyphase matrix, H(w). PCFBs are an interesting
design example because they are optimal for maximizing coding
gain and minimizing mean-squared error in the presence of
quantization noise. It has been proven that they are also optimal
for any concave function of the subband variance vector [6].

Table 2 lists the performance of the PUFB design algorithm
and compares it to another elegant design algorithm described by
Tkacenko in [4]. Tkacenko generously made available the
MATLAB code to duplicate his results on the Internet. The PR
polyphase matrix was populated with incrementally more two-
parameter building blocks. As the table shows, the MSE of the
optimal PR solution decreased monotonically with greater degrees
of freedom, until the number of free parameters was too great for
the algorithm to converge. A PU approximation to the optimal PR
solution with the largest number of free parameters was then used
as the initial condition for a search over PU matrices to arrive at
the final filter bank solution. The length of the channel filters in
the final PUFB was eight taps.

Table 2. Performance of PUFB Design Algorithm

Algorithm MSE(D(w), H*(w))
Tkacenko PU solution 1.7024
PU search with random start value 1.5747
PR matrix with 14 angles 1.5578
PR matrix with 16 angles 1.5549
PR matrix with 18 angles 1.5539
PR matrix with 20 angles 1.5415
PR matrix with 22 angles 1.5395
PR matrix with 24 angles 3.6687 (algorithm did
not converge)
PU search with PU initial condition 1.5741

As Table 2 shows, the lowest MSE for a PUFB was attained with
the PU initial condition. Figure 2 illustrates the frequency
response of one of the optimal channel filters (red), and overlays
the ideal filter response (blue dotted line), with the Tkacenko
solution (black).

F Wres 8
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Fig 2. Channel Filter One
As the curves show, the derived filter is an excellent
approximation to the ideal brick-wall filter with high frequency
selectivity in the narrow bandpass regions.

10. CONCLUSIONS

In this paper we showed that the rational canonical form of a
polyphase matrix exists in the ring M(N, C[z, z']) and can be
written as a matrix in the ring M(N, C)[z, z']. The factorization
of paraunitary polyphase matrices into a similarity transformation
of the rational canonical form makes possible a very simple lattice
implementation of the filter bank. Also, this decomposition lends
itself easily to a representation of a large class of perfect
reconstruction filter banks and can be used to find an initial
condition for PUFB design algorithms that ultimately yields better
MSE performance.
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