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ABSTRACT 

In this paper we consider the rational canonical form of arbitrary 
polyphase matrices and use it to derive a simple implementation of 
paraunitary filter banks (PUFBs) based on a cascade of elementary 
building blocks.  Furthermore, this decomposition is shown to be 
easily extendable to include a large class of perfect reconstruction 
filter banks (PRFBs) and can be especially useful for deriving the 
initial condition of PUFB design algorithms. 
 

Index Terms— rational canonical form, polyphase matrices, 
paraunitary filter banks
 

1. INTRODUCTION 
The polyphase matrix of an M-channel causal finite impulse 
response (FIR) filter bank may be written as 
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where z = rej  and Hk is a scalar M-by-M matrix.  The matrix H(z) 
resides within the ring of M-by-M matrices with Laurent 
polynomial entries, denoted by M(N, C[z, z-1]), with C the field of 
complex numbers.  The rational canonical form of this matrix is 
not guaranteed to exist within the Laurent polynomial ring C[z,z-1] 
since this ring is not a field.  In this paper we will show that the 
rational canonical form of H(z) does indeed exist as another matrix 
in the ring M(N, C[z, z-1]).  If H(z) corresponds to the polyphase 
matrix of a paraunitary filter bank (PUFB), then the algorithm for 
computing the rational canonical form illustrated in this paper may 
be used to implement H(z) as a particularly simple product of 
elementary building blocks.  Furthermore, this new decomposition 
of H(z) may be used to represent a large class of perfect 
reconstruction filter banks (PRFBs) as well and can be used to 
provide initial conditions for PUFB design algorithms. 
 
2. EXISTENCE OF RATIONAL CANONICAL FORM 

The rational canonical form of a polyphase matrix H(z) over the 
ring C[z, z-1] exists as a matrix over the field K.  K denotes the 
field of rational functions p(z)/q(z), q(z) 0, with coefficients in C.  
The field K is the field of fractions of the ring C[z, z-1].  This field 
is also denoted C(z).  Any matrix H(z) in M(N, C[z, z-1]) is similar 
to a matrix in M(N, K) in rational canonical form.  In other words, 
there exists an invertible M-by-M matrix P(z) such that P(z)-

1H(z)P(z) is in rational canonical form.  A matrix R(z) in rational 
canonical form is a matrix such as 
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The matrix Ci(z) is the companion matrix corresponding to the 
invariant factor ai(x) of H(z).  The invariant factors ai(x) may be 
made unique by requiring that pi(z) and qi(z) are monic 
polynomials. 

The characteristic polynomial of H(z) is a polynomial in the 
indeterminant x with coefficients in the Laurent polynomial ring 
C[z, z-1], namely c(x) = det[xI – H(z)].  The invariant factors of 
R(z) are the monic factors of c(x) [1].  The invariant factors of 
H(z) and R(z) are the same, namely the monic polynomials ai(x). 

The important contribution of this section is the following 
claim. 
Claim:  The rational canonical form of the polyphase matrix H(z) 
is a matrix with entries in the ring C[z, z-1].  In other words, it is an 
element in the ring M(N, C[z, z-1]). 
Proof:  Since C is a field, the ring C[z, z-1] is a unique factorization 
domain (UFD).  The field K = C(z) is the field of fractions of 
C[z, z-1].  The characteristic polynomial c(x) is in the ring  
C[z, z-1][x].  By Gauss’ Lemma, since c(x) can be factored in 
C(z)[x], then it is reducible in C[z, z-1][x].  Consequently, the 
invariant factors of a matrix H(z) in M(N, C[z, z-1]) are 
polynomials in the ring C[z, z-1] and therefore the rational 
canonical form R(z) is a matrix in the ring M(N, C[z, z-1]). 
 

3. AN ALTERNATIVE FORM FOR R(Z) 
Claim:  The rational canonical form R(z) of a polyphase matrix 
H(z) can be written as a Laurent polynomial with matrix 
coefficients.  In other words, 

( )
( )

( )

( )
.

000
0

0
00

21 Nzzz

z

z
z

z

−−− ++++=

≡

N210

M

2

1

RRRR

C

C
C

R
 

Proof:  The claim follows once one proves that the ring of matrices 
with Laurent polynomial entries is isomorphic to the ring of 
Laurent polynomials with matrix coefficients.  It is sufficient to 
prove that [2], 

[ ]( ) ( )[ ]xNxN CMCM  , , ≅  
which implies that 

[ ]( ) ( )[ ]11 , ,, , −− ≅ zzNzzN CMCM . 
The proof is omitted for brevity. 
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4. COMPUTATION 
To compute the rational canonical form R(z) of the M-by-M matrix 
H(z), one approach is to diagonalize the matrix xI – H(z) [1].  The 
invariant factors of H(z) will then appear on the diagonal.  The 
invariant factors should be monic and satisfy the divisibility 
condition ai(x) divides ai+1(x).  The direct sum of the companion 
matrices associated with each invariant factor yields the matrix 
R(z) in rational canonical form.  By keeping track of the row 
operations used to diagonalize xI – H(z) one can also construct the 
matrix P(z) such that P(z)-1H(z)P(z) = R(z). 

The following three elementary row and column operations 
can be used to diagonalize xI – H(z): 

1. interchange two rows or columns 
2. add a multiple in K[x] of one row or column to another, 

e.g. add p(x) times the jth row to the ith row 
3. multiply any row or column by a unit in K[x], i.e. by a 

nonzero element in K. 
The matrix P(z) can also be computed systematically [1].  First, let 
d1,…,dm denote the degrees of the monic nonconstant polynomials 
a1(x),…,am(x) appearing on the diagonal.  Begin with the matrix 
S = I, the identity matrix.  For each row operation used to 
diagonalize xI – H(z), change the matrix S as follows. 

1. If the ith and jth rows were interchanged, then 
interchange the ith and jth columns of S, 

2. if Rowi + p(x)Rowj  Rowi, then subtract the product of 
the matrix p(H(z)) times the ith column of S from the 
jth column of S, i.e. Colj – p(H(z))Coli  Colj, 

3. if the ith row is multiplied by a unit, u, then divide the 
ith column of S by u. 

Once the matrix xI – H(z) has been diagonalized, the first M – m 
columns of S will be zero.  Then for each i = 1,…,m multiply the 
ith nonzero column of S successively by H(z)0 = I, H(z), H(z)2,…, 
H(z)di-1, where di is the degree of ai(x).  Use the resulting column 
vectors in this order as the next di columns of a matrix P(z).  Then 
P(z)-1H(z)P(z) = R(z). 
 

5. APPLICATION TO PUFBS 
In this section we consider the example of paraunitary filter banks.  
The analysis (or synthesis) polyphase matrix of a normalized 
PUFB satisfies the condition, 

( ) ( ) .for ωjH ezzz == IHH  
Furthermore, M-channel PUFBs may be decomposed into a 
product of elementary building blocks as in [3], 

( ) ( ) ( )QJGGH ωωω 1L=  (1) 
where L is the Smith-McMillan degree of H( ), Gk and Q are 
M-by-M orthogonal matrices, ( ) = diag(I, e-j I) for M even, and 
J = diag(±1,…,±1).  Each matrix Gk and Q can be written as the 
product of ½M(M – 1) Givens rotation matrices in the sequence, 

{ } { }{ }011,0121,11,2 BBBBBG −−−−= MMMMk .    (2) 
The matrix Bij corresponds to a Givens rotation matrix with cos( n) 
in the ith row and ith column, sin( n) in position (i, j), -sin( n) in 
position (j, i), and cos( n) in position (j, j) with 1  n  ½M(M – 1). 
 
5.1. Case L = 1, M = 2 
For a simple example, let M = 2 and L = 1 in (1) above.  Without 
loss of generality set QJ = I.  Then the polyphase matrix is 
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Table 1 lists the steps to compute the rational canonical form of 
H(z) and the change of basis matrix P(z).  In this table, Ri denotes 
the ith row, and Cj denotes the jth column. 
 

Table 1.  Sample Rational Canonical Form Computations 
Steps to compute R(z) Steps to compute P(z) 

Step 1:  Form the matrix 
xI – H(z) 

Step 1:  Form the matrix 
S = I 

Step 2:  –sin( )R1  R1, 
(x – cos( ))R2  R2 

Step 2:  -(1/sin( ))C1  C1, 
(H(z) – cos( )I)C1 + C2 C1 

Step 3:  -R1 + R2  R2 Step 3:  sin( )C1  C1 
Step 4:  (1/sin( ))R1  R1 Step 4:  (z/sin( ))C2  C2, 

-C1  C1 
Step 5:  z-1sin( )R2  R2, 
(x2 – xcos( )(1+z-1) + z-1)R1  
R1 

Step 5:  C1 – (H(z)2 – 
cos( )H(z)(1 + z-1) + z-1I)C2  
C2 

Step 6:  -R1  R1 Step 6:  (H(z) – cos( )I)C1  
C1, sin( )z-1C2  C2 

Step 7:  R1 + R2  R1 Step 7:  (H(z)2 – cos( )H(z)(1 + 
z-1) + z-1I)C1  C1 

Step 8:  (1/(x – cos( ))R1  R1, 
(1/(z-1sin( ))R2  R2 

Step 8:  Now, 
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Also, m = 1, d1 = 2. 
Step 9:  (1/(x2 – xcos( )(1 + z-1) 
+ z-1)R1  R1 

Step 9:  Form the matrix, 
( ) ( )[ ]22 CzCz HIP =  

The result of these computations is 
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 (4) 

Furthermore, P(z)-1H(z)P(z) = R(z). 
Using the rational canonical form of H(z), one can write 

H(z) = H1(z) + z-1H2(z) where H1(z) and H2(z) are rank one 
matrices defined as 
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Now for M = 2, the decomposition of PUFBs given in (1) can be 
rewritten as, 
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6. SIMPLE IMPLEMENTATION OF PUFBS 

Using the decomposition Pi(z)Ri(z)Pi(z)-1 = Gi (z) for each 
building block of a 2-by-2 polyphase matrix in (1), a two channel 
PUFB may be constructed as a cascade of the lattice sections 
shown in Fig. 1.  Here v1, v2 are the input signals and u1, u2 are the 
output signals.  This lattice structure lends itself easily to an 
implementation in hardware. 
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Fig. 1.  Lattice Implementation of PUFB 

Similar lattice structures can be derived for PUFBs with 
greater than M = 2 channels using (2), the rational canonical form 
for (3) and the rational canonical form for a scalar Givens rotation 
matrix.  Using the same computational algorithm described in 
Section 4, a scalar Givens rotation matrix can be written in rational 
canonical form with PRP-1 = G as, 
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6.1. Case M = 3 

Using (2), a 3-by-3 paraunitary polyphase matrix may be 
written as, 

( ) ( ) ( ) ( ) ( ),301202112 zz BBBH θθθ=  
with (z) = diag(1, z-1, z-1).  A lattice implementation can be 
constructed from the following matrices derived using (4) and (5), 
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Similar matrices and lattice structures may be derived using (2), 
(4), and (5) for paraunitary polyphase matrices with M = 4, or 
larger.  Those examples will not be presented here to conserve 
space. 
 

7. PERFECT RECONSTRUCTION FILTER BANKS 
Consider the case M = 2 again.  A perfect reconstruction filter 
bank satisfies the property that H(z)E(z) = cz-mI, where H(z) is the 
analysis polyphase matrix and E(z) is the synthesis polyphase 
matrix, c  0 and m is an integer.  A PUFB is the special case 
where E(z) = HH(z).  A perfect reconstruction filter bank may be 
constructed by parameterizing the rational canonical form R(z) and 
the conjugation matrix P(z) independently using one angle for 
each.  For example, the system with 
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is PR since E(z) = H(z)-1.  Note that for the special case when 1 = 
2, H(z) is paraunitary.  Therefore, this set of PRFBs constructed 

using two parameters for every building block includes the set of 
PUFBs as a proper subset. 
 

8. APPLICATION TO PUFB DESIGN 
Since the space of PRFBs is larger than and includes the space of 
PUFBs, one can design a PUFB by searching over the space of 
PRFBs for an optimal solution and then choosing the paraunitary 
filter bank closest to it for an initial condition in a strictly PUFB 
search.  The advantage of this approach is that if the initial 
condition of a strictly PUFB search is closer to the optimal 
solution, then the more likely it is that a nonlinear optimization 
program will settle on the global solution instead of a local 
minimum.  Consider the following PUFB design algorithm which 
minimizes the Mean Square Error (MSE), , between a desired 
polyphase matrix, D( ), and an approximation H( ). 
 
8.1. PUFB Design Algorithm 
Step 1.  Form the MSE objective function, 
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where || . ||F denotes the Frobenius norm, W( ) is a scalar 
weighting function set equal to one, P( ) is an M-by-M  perfect 
reconstruction polyphase matrix as described in Section 7, and 
D( ) is the desired or ideal polyphase matrix. 
Step 2.  With the angles i as free parameters, minimize  over all 
P( ) using a nonlinear optimization program such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm.  Call the optimal 
solution, P*( ). 
Step 3.  Compute the paraunitary polyphase matrix H'( ), 
parameterized as in (1) and (2), which minimizes  
MSE(P*( ), H( )) over all H( ). 
Step 4.  Use H'( ) as the initial starting point in a nonlinear 
optimization program which minimizes MSE(D( ), H( )) over all 
H( ).  Call this optimal solution H*( ).  Denote  
MSE(D( ), H*( )) by MSE0. 

The advantage of using the proposed PUFB design algorithm is 
that it satisfies the following property. 
Claim:  Define MSE1 = MSE(D( ), H'( )).  Using the above filter 
bank design algorithm, 
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where  is a small nonnegative constant. 
Proof:  Since the MSE is a norm on the space of polyphase 
matrices, by the triangle inequality, 
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Since P*( ) is the optimal solution over a larger set of matrices 
than H*( ), 
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As a result, 
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or in other words, MSE1  MSE0 + .  The proof that 
MSE(H'( ), H*( ))  2·MSE0 +  is similar. 
 
8.2. Case M = 4 
For M = 4, a PR polyphase matrix, P(z), which can be used to 
design a PUFB using the previously described algorithm is 
constructed as, 
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The inverse of P(z) is given by, 
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with the matrices Bij as in (5) and (2) except with two angle 
parameters as in (6).  The system so described is PR since 
P(z)P(z)-1 = I.  The matrix T23 is, 
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The matrices T13, T12, T03, T02, T01 are constructed similarly using 
two angle parameters for each.  Note that if i = i+1 for i odd, then 
P(z) is paraunitary. 
 

9. RESULTS 
The PUFB design algorithm was used to design a finite impulse 
response PU approximation to an ideal principal component filter 
bank (PCFB).  PCFBs are described in detail in [4], [5], and [6].  A 
PCFB is the solution to the problem of finding optimal Q-by-M 
and M-by-Q analysis and synthesis polyphase matrices, with 
Q < M, such that the time-averaged mean squared error between 
the vector input to the filter bank and the vector output is 
minimized.  An ideal PCFB corresponding to an infinite order PU 
filter bank has channel filters with brick-wall responses.  This ideal 
filter bank can be approximated using a FIR PU filter bank by 
minimizing the mean squared Frobenius norm error between the 
desired polyphase matrix of the ideal PCFB, D( ), and the FIR PU 
synthesis polyphase matrix, H( ).  PCFBs are an interesting 
design example because they are optimal for maximizing coding 
gain and minimizing mean-squared error in the presence of 
quantization noise.  It has been proven that they are also optimal 
for any concave function of the subband variance vector [6]. 

Table 2 lists the performance of the PUFB design algorithm 
and compares it to another elegant design algorithm described by 
Tkacenko in [4].  Tkacenko  generously made available the 
MATLAB code to duplicate his results on the Internet.  The PR 
polyphase matrix was populated with incrementally more two-
parameter building blocks.  As the table shows, the MSE of the 
optimal PR solution decreased monotonically with greater degrees 
of freedom, until the number of free parameters was too great for 
the algorithm to converge.  A PU approximation to the optimal PR 
solution with the largest number of free parameters was then used 
as the initial condition for a search over PU matrices to arrive at 
the final filter bank solution.  The length of the channel filters in 
the final PUFB was eight taps. 

Table 2.  Performance of PUFB Design Algorithm 
Algorithm MSE(D( ), H*( )) 

Tkacenko PU solution 1.7024 
PU search with random start value 1.5747 
PR matrix with 14 angles 1.5578 
PR matrix with 16 angles 1.5549 
PR matrix with 18 angles 1.5539 
PR matrix with 20 angles 1.5415 
PR matrix with 22 angles 1.5395 
PR matrix with 24 angles 3.6687 (algorithm did 

not converge) 
PU search with PU initial condition 1.5741 
As Table 2 shows, the lowest MSE for a PUFB was attained with 
the PU initial condition.  Figure 2 illustrates the frequency 
response of one of the optimal channel filters (red), and overlays 
the ideal filter response (blue dotted line), with the Tkacenko 
solution (black). 

 
Fig 2.  Channel Filter One 

As the curves show, the derived filter is an excellent 
approximation to the ideal brick-wall filter with high frequency 
selectivity in the narrow bandpass regions. 
 

10. CONCLUSIONS 
In this paper we showed that the rational canonical form of a 
polyphase matrix exists in the ring M(N, C[z, z-1]) and can be 
written as a matrix in the ring  M(N, C)[z, z-1].  The factorization 
of paraunitary polyphase matrices into a similarity transformation 
of the rational canonical form makes possible a very simple lattice 
implementation of the filter bank.  Also, this decomposition lends 
itself easily to a representation of a large class of perfect 
reconstruction filter banks and can be used to find an initial 
condition for PUFB design algorithms that ultimately yields better 
MSE performance. 
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