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ABSTRACT

The complex Chebyshev error criterion is usually used as a general 
constraint in design of peak constraint weighted least square error 
(PCWLSE) filters. It applies an upper bound on the maximum 
magnitude of error between the desired and designed transfer 
functions of the filter. Therefore, it confines the corresponding 
maximum phase error as well. However, it imposes an over 
restricted constraint which reduces the feasibility region of the 
filter design problem. In this paper, a new and comprehensive class 
of constraints is proposed for design of PCWLSE filters that 
provides a larger feasible region than that of the complex 
Chebyshev constraint. Hence, the filter weights acquire larger 
feasible space to search and select better optimal values and 
consequently boost up the performance of the designed filter by 
achieving less weighted least square error. Simulation results show 
superiority of the proposed constraints over that of the complex 
Chebyshev criterion. 

Index Terms— Peak Constraint weighted least square 
design, Complex Chebyshev error, Linear constraints

1. INTRODUCTION 

Adams in [1] has shown that filter design based on trade-off 
between the least square error ( 2L norm) and the Chebyshev error 
( �L norm) has more desirable properties than using any of them 
alone. These are called peak-constraint weighted least-square error 
(PCWLSE) filters and have drawn attention of several researchers 
in the past decade [2-5]. Although these filter design procedures 
are mainly realized by the FIR filters, however in [4-7] they have 
been extended to the Laguerre digital filters. The Laguerre filter 
makes a general filter structure that comprises the FIR filter 
structure as its own specific sub-structure. Adams in [3] introduced 
the general form of the PCWLSE criterion and proposed different 
constraints including the complex Chebyshev error criterion for 
this type of filter design. The reason for using the complex 
Chebyshev error constraint, as it is used in several works [2-8], is 
to achieve linear constraints. With linear constraints efficient 
algorithms can be exploited to solve the corresponding semi-
infinite quadratic optimization problems [4-7] and [9]. Although, 
the complex Chebyshev error is used to achieve linear constraints, 
one should be aware of the following problems:

i) with the complex Chebyshev error constraint, the maximum 
magnitude and phase errors are restricted by a single threshold.  In 
other words, one can not use distinct thresholds for magnitude and 
phase errors independently. While, in some applications it may be 
required to do so.

ii) Using the complex Chebyshev error constraint along with 
other constraints, for example phase constraint, may dominantly 
over restrict (unnecessarily restrict) the feasible region and make 
the other constraint ineffective. On the contrary, the other 
constraint may be dominant and over restrict the feasible region 
and make the complex Chebyshev error constraint redundant. Both 
over restricted feasible region and redundant constraint are not 
desirable. Since redundant constraint unnecessarily increases the 
complexity of computations, and over restricted feasible region 
results in larger least square errors. Achieving larger error is due to 
providing less room for the search region and consequently 
preventing weights from selecting the best optimal solutions. The 
set of comprehensive constraints proposed in this paper which is 
novel and has been presented for the first time in literature, deals 
with all the aforementioned problems and provides optimal 
solution with less weighed least square error.

2. THE PROPOSED AND THE COMPLEX 
CHEBYSHEV ERROR CONSTRAINTS 

The frequency response of a Laguerre filter of order N with real 
coefficients l�  is defined as [4-5]: 
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� , are the Laguerre basis 
functions and form a complete orthonormal set that are given by: 
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where b denotes the Laguerre parameter and 1
b  guarantees the 

stability of this filter and by setting b=0, Laguerre filter reduces to 
FIR filter. Let 

P�  and 
S� denote the maximum allowable deviation 

in magnitude of the filter response from the desired frequency 
response in passband and stopband, respectively. Also let 
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denote the corresponding maximum allowable deviation in phase 
of the filter in passband.  Hence, the problem of filter design is 
originally as follows:  

Problem 1: 
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where )( �jeD denotes the desired frequency response which is 
set to 0 in stopband. The passband and stopband regions of 

)( �jeD  are stated by 
P� and

S�  that are two compact and 
uncountable subsets of ],0[ �  for the real filter coefficients and 

]2,0[ �  for the complex filter coefficients and r is the real 
part of the matrix NNC �� ),( nm , defined as:

)1(
)(

)1(2

)(
)1(2),(

2
1

1

S

1

1

p

S

P

bd
be

beew

d
be

beewnm

nmj

nmjj

nmj

nmjj

��
�

�
�
�

	

�
�

�
�
�

�

�

�

� 	�

��

� 	�

��

�

�

�

��

�

��

                                             (9) 

 and N���  is a vector with elements )(k� , where 
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in which ��.Re  and �  are the real part and complex conjugate 
notations, respectively. In conventional filter design, the complex 
Chebyshev error criterion is used with problem 1, to combine the 
nonlinear constraints of this problem. Then by real rotation 
theorem, a set of linear constraints are produced under which the 
filter can be solved using the aforementioned new approaches 
applied to semi-infinite quadratic programming problems. Using 
the complex Chebyshev error criterion in problem 1, results in the 
following constraints: 

P),()()( ���� ����� jj eDeH

SS ,)( ��� ���jeH                                                        (11)

in which ))(sin||,)((min)( 1 ������ DP� . Depending on the 
maximum allowable errors for the magnitude and phase, we have 
different situations. However, we explain the new proposed set of 
constraints using the case where 1P sin�� 
 , which itself is the 
most common case in practice. Other situations are very similar. In 
fact, it means that we are more sensitive to the magnitude error in 
the passband rather than the phase error in the same band. The 
shaded region in figure 1, represents a typical feasible region for 
the passband region of the problem, in this situation. The circle 
with center D shows the region covered by the complex 
Chebyshev error constraint for this problem. It is clear that the 
regions out of this circle are also feasible regions of the problem 

and may contain the optimal solution. Our objective is to find the 
closest region to the feasible region but with linear constraints. In 
order to accomplish this goal, first, we have proposed to multiply 

the frequency response of the filter )( �jeH  by )( �jeDe�� . In fact, 
by this multiplication, the feasible region is rotated such that the 
search regions for optimal solution lie around the real axis of the 
complex plain. In this way, a new frequency response, called 

)( �jeK  is designed that is equal to )()(
�� jeDjj eeH �� . When the 

optimal solution is obtained, then the results in frequency domain 
must be multiplied by )( �jeDje �  to rotate them back to the original 
location. The result of this rotation is the region represented in 
figure 2. The linear constraints that are proposed for design of 

)( �jeK  are formed by the approximate dashed lines plotted in 
right side of this figure. The proposed region has been developed 
as what follows:

A- Simplification of the passband magnitude constraint (6) by 
considering )( �jeK  instead of )( �jeH  with the assumption of 

1�D , which leads to the following two equations: 

PP ,1)( ��	� ���jeK                                                (12) 
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 Fig. 1. The feasible region in original space (left). The magnified 
version of the feasible region (right) 

Fig. 2. The rotated feasible region (left). The proposed constraints 
for  designing )( �jeK -dashed lines/’ (right).  

By the real rotation theorem [8], a complex magnitude inequality 
as ��z  can equivalently be expressed by: 
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Thus, the inequality (12) can be expressed as a linear constraint. 
Therefore, this inequality can be used as a constraint in the design 
process and is represented as the outer circle in left side of figure 2 
or the curved dashed line in right side of this figure. The real 
rotation theorem can not be applied to inequality (13). 
Consequently, it may not be simplified to a linear constraint. 
Instead we approximate this inequality by a line perpendicular to 
the real axis. This constraint is represented by the straight dashed 
line passing through the point R and perpendicular to the real axis 
in figure 2. Using this approximation for the equation (13) results 
the following linear inequality constraint: 

PP ,1))(Re( ����� ���jeK                                  (15) 

B- The constraints on the phase of )( �jeK can be approximated by 
two parallel lines that are drawn perpendicular to the imaginary 
axis. These lines are represented by the two remaining dashed lines 
parallel to the real axis in figure 2 passing through the points S and 
T. By evaluating the imaginary parts of points S and T, we can 
express these constraints by the following two equations: 
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C- Using the proposed method, it is easy to obtain the constraint 
for the group delay error in case it is needed. Let GE denote the 
group delay error. Then 
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which by definition stated for )( �jeK , it is clear that the phase of 

)( �jeK is actually the phase error for )( �jeH .  On the other hand, 
we have approximated the phase constraint for )( �jeK  by 
equations (16) and (17). Hence, by substituting the approximate 
values, we can evaluate the group delay error constraint as follows: 
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By definition of )( �jeK and considering the Laguerre basis 
functions introduced in (4), the group delay error can be 
represented as �� T)( h�GE  where h is a vector that for  

n = 0,…,N-1, we have: 
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Combining all the aforementioned constraints, the PCWLSE 
design problem is converted to the following problem: 

Problem 2: 
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and the group delay limit is denoted as 
gd� . Using real rotation 

theorem stated earlier, problem 2 is converted to a semi-infinite 
quadratic programming with linear constraints. Although any of 
the methods in [4-7] and [9] can be used to solve the resultant 
problem, but in this paper the discretization method is exploited to 
solve the problem. The reason for using this simple choice is that 
our main concern in this paper is to introduce the most appropriate 
feasible region for the optimum filter design and study its effect in 
the final solution, rather than selecting the best solution approach. 

4. NUMERICAL EXAMPLE 

Design a lowpass Laguerre filter with following specifications:  
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1� = 0.1. 

Using the same procedure stated in [4], the suboptimal value of the 
Laguerre parameter is found to be 0.77. Here, the Laguerre filters 
are of order 12 while the FIR filters are of order 46.   
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Fig. 3. Magnitude of the Laguerre filters of order 12 and FIR filters 
with 46 taps. 

From figure 3, it is obviously seen that the PCWLSE design filters 
with the proposed constraints have much lower least square error 
in the stopband compared to those designed by the complex 
Chebyshev error. Here, Figure 4 illustrates the passband phase 
errors for the above filters. The constraints of the problem are the 
straight lines on 0.1 and -0.1. It is clearly seen that using the 
complex Chebyshev error restricts the phase error to 0.01 and -
0.01 which is the same as the magnitude error, while the maximum 

Laguerre Chebyshev constraint
Laguerre propsoed constraints
FIR Chebyshev constraint
FIR propsoed constraints
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allowable value for the passband phase error is 0.1. The proposed 
method allows the problem to use approximately all its feasible 
region. Therefore, we can reach the LSE for the designed filters. 
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Fig. 4. Passband Phase error of  the Laguerre filter of order 12 and 
FIR filter with 46 stages for ].,0[ �

Figure 5, shows the passband magnitude of the designed filters. 
They satisfy the magnitude constraint in the passband. 
Table 1 shows the weighted least square error of the designed 
filters. Obviously, filters designed by the proposed method have 
better performance (less WLS) than those designed by the complex 
Chebyshev error constraint.
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Fig. 5. The passband magnitude of the filters.  

Table. 1. Weighted Least square error for designed filters  with Laguerre
                   filters of 12 stages and FIR filters of order 46. 
                      Filter Type    WLSE  (db) 

Laguerre filter (complex Cheb. Error) -28.4732 
Laguerre filter (Proposed Constraints) -57.7211 
FIR filter (complex Cheb. Error) -29.4413 
FIR filter (Proposed Constraints) -35.5116 

4. CONCLUSION

In this paper, instead of dealing with different solution approaches 
for the quadratic problem of the PCWLSE filter design, we have 
proposed a new and comprehensive set of constraints which results 
in significant improvement in the performance of the designed 
filter in terms of overall least square error. This is due to the fact 
that in conventional filter design, the complex Chebyshev error 
criterion is used that restricts the phase error to the same amount as 
the magnitude constraint. By the new proposed constraints, not 

only we are able to define distinct independent values for the 
maximum magnitude and phase errors, but also a larger feasible 
region is introduced to the problem, and consequently more 
freedom is given to the filter coefficients to search for the smallest 
WLSE solution in this region.  
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