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ABSTRACT
This paper presents fundamental limitations imposed on the
frequency response of a filter by a non-negative impulse re-
sponse (NNIR). Several upper-bounds on power spectral at-
tenuation/gain in linearly spaced frequency regions are de-
rived. These upper-bounds serve as a guide in the design of
NNIR filters.

Index Terms— Non-negative impulse response, bounds,
filter, frequency response.

1. INTRODUCTION
This paper is a companion paper to [1] and provides new
insights into the fundamental limitations on the frequency
response of a filter with non-negativity constraints on the im-
pulse response. While the paper in [1] analyzed the frequency
response constraints for geometrically spaced frequency sam-
ples, this paper approaches the problem for linearly spaced
frequency points. The formulation of frequency response
properties in terms of equi-distantly spaced frequency points
is of particular importance for the characterization of evi-
dence filters [2]. This filter type has the capability of selec-
tively fusing information from a variety of data and signal
sources, while still weighing previously acquired informa-
tion. For these types of tasks, frequency regions of interest
are often not geometrically spaced. The performance bound-
aries of evidence filters are currently not clear and this paper
sheds some light on this problem. The paper shows that the
non-negativity constraint is a severe constraint and, unlike in
classical filter design, increasing the filter order often does
not lead to meeting given frequency specifications.
Previous results on the topic of non-negative impulse

response filters and their corresponding frequency response
properties have been reported in numerous publications over
several decades, some of which can be found in [3–9].
This paper revisits the performance constraints of non-

negative response filters in [1] for the case of equidistantly
spaced frequency points. Section 2 introduces the main theo-
rems and also illustrates the results through some simple de-
sign examples. Section 3 summarizes the obtained insights
and offers conclusions.
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2. FUNDAMENTAL LIMITS OF NNIR FILTERS

Theorem 2.1 If the impulse response of a filter is non-
negative, i.e., h (n) ≥ 0, n ∈ Z, and the power spectral
attenuation in the frequency region [0, ωo] is bounded by:

|H (0)|2 − δ ≤ |H (ω)|2 ≤ |H (0)|2

where δ > 0, 0 ≤ ω ≤ ωo, ωo ∈ (0, π], then the end-to-end
power spectral attenuation or gain of the frequency region
[(m− 1)ωo, mωo] is bounded by:∣∣∣|H ((m− 1)ωo)|2 − |H (mωo)|2

∣∣∣ ≤ (2m− 1) δ

wherem ∈ Z
+, m ≥ 2, mωo ≤ π.

Proof: Here only the proof for the power spectral atten-
uation case is given. The case of power spectral gain can be
proven in a similar manner.
LetUk [x] be the kth-degree Chebyshev polynomial of the

second kind in variable x. Let

F (ω) �
cos ((m− 1)ω)− cos (mω)

1− cosω
=

sin
((

2m−1
2

)
ω
)

sin
(

ω
2

)
= U2m−2

[
cos

(ω

2

)]
From the property of Uk [x]:

max
x

Uk [x] = lim
x→±1

Uk [x]

we have:

max
ω

F (ω) = lim
ω→0

U2m−2

[
cos

(ω

2

)]
= 2m− 1

Since

h (n) ≥ 0

⇒ h̃(n) � h(n) ∗ h(−n) = h(n) ∗ h∗(−n) ≥ 0

and

|H (ω)|2 = H(ejω)H∗(ejω)
Z←→ h(n) ∗ h∗(−n) = h̃(n)

we have:

|H (ω)|2 =
∞∑

l=−∞

h̃(l)e−jωl =
∞∑

l=−∞

h̃(l) cos(ωl)
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Therefore

|H ((m− 1)ωo)|2 − |H (mωo)|2

=
∞∑

l=−∞

h̃ (l) (cos ((m− 1)ωol)− cos (mωol))

≤ (2m− 1)

∞∑
l=−∞

h̃ (l) (1− cos (ωol))

= (2m− 1)
(
|H(0)|2 − |H (ωo)|2

)
Since

|H(0)|2 − |H (ω)|2 ≤ δ, w ∈ [0, ωo]

⇒|H(0)|2 − |H (ωo)|2 ≤ δ

(1)

Inequality (1) then becomes

|H ((m− 1)ωo)|2 − |H (mωo)|2 ≤ (2m− 1) δ �

Comments: Theorem 2.1 can be used to study the rela-
tionship between the roll-off/gain of the falling/rising edges
of a variety of NNIR filter types and the power spectral atten-
uation near frequency zero.
Example: If an NNIR highpass filter’s specifications are

as follows:
• passband frequency region: 0.6π ∼ π

• passband ripple: (−10)dB ∼ 0dB (0.3162 ∼ 1)
• stopband gain:≤ −70dB (3.162× 10−4)
• transition frequency region: 0.5π ∼ 0.6π

then it is found that the power spectral attenuation should at
least have an attenuation of 0.04dB at 0.1π, regardless of the
attenuation at the frequencies less than 0.1π (Note that the
DC gain of 0dB always exists regardless of filter type).
Consider ωo = 0.1, m = 6, then the transition band lies

in [(m− 1)ωo, mωo]. Let δ be the maximalmagnitude atten-
uation at ωo. Since:

x = −10dB = 0.3162, y = −70dB = 3.162× 10−4

and
|H (6ωo)| ≥ x, |H (5ωo)| ≤ y

from Theorem 2.1, we have:

x2 − y2 ≤ |H (6ωo)|2 − |H (5ωo)|2 ≤ (2× 6− 1) δ

⇒ δ ≥ x2 − y2

11
= 0.0091

Therefore:

|H (ωo)| =
√

1− δ ≤ 0.9954 = −0.04dB.

Theorem 2.2 If the impulse response of a filter is non-
negative, i.e., h (n) ≥ 0, n ∈ Z, and the power spectral
attenuation within [0, (m− 1)ωo] is bounded by:

|H (0)|2 − δ ≤ |H (ω)|2 ≤ |H (0)|2

where m ∈ Z
+, m ≥ 2, δ > 0, 0 ≤ ω ≤ (m− 1)ωo, ωo ∈(

0, π
m

]
, then the end-to-end power spectral attenuation of the

frequency region [(m− 1)ωo, mωo] is bounded by:

|H ((m− 1)ωo)|2 − |H (mωo)|2 ≤ 2m− 1

(m− 1)
2 δ

wheremωo ≤ π.

Proof: To find the relationship between the attenuations
in the two frequency regions, consider the function f (ω):

f (ω) �
cos ((m− 1)ω)− cos (mω)

1− cos ((m− 1)ω)

⇒ d

dω
f (ω)

∣∣∣
ω=ωo

� p =
A

[1− cos ((m− 1)ωo)]
2

where

A = 4 sin
(mωo

2

)
sin

(
m− 1

2
ωo

)
·B

B = sin
(ωo

2

) [
−

(
m− 1

2

)
+

1

2

sin
((

m− 1
2

)
ωo

)
sin

(
ωo

2

)
]

Since
sin

((
m− 1

2

)
ωo

)
sin

(
ωo

2

) =
sin

(
(2m− 1) ωo

2

)
sin

(
ωo

2

) = U2m−2

[
cos

(ωo

2

)]
and from the property of Ul[x], l ∈ Z

+, we have:

sin
((

m− 1
2

)
ωo

)
sin

(
ωo

2

) ≤ lim
ωo→0

sin
((

m− 1
2

)
ωo

)
sin

(
ωo

2

) = 2m− 1

Since

sin
(ωo

2

)
≥ 0, sin

(mωo

2

)
≥ 0, sin

(
m− 1

2
ωo

)
≥ 0

we have B ≤ 0, and therefore A ≤ 0. So we have:

p ≤ 0 (2)

Inequality (2) indicates that f(ωo) is monotonically decreas-
ing in

(
0, π

m

]
. Therefore a maximum is obtained when ωo →

0:

max
ωo∈(0, π

m
]
f (ωo) = lim

ωo→0
f (ωo) =

2m− 1

(m− 1)
2 (3)

From (3) we have:

|H ((m− 1)ωo)|2 − |H (mωo)|2

=
∞∑

l=−∞

h̃ (l) (cos ((m− 1)ωol)− cos (mωol))

≤ 2m− 1

(m− 1)
2

∞∑
l=−∞

h̃ (l) (1− cos ((m− 1)ωol))

=
2m− 1

(m− 1)
2

(
|H (0)|2 − |H ((m− 1)ωo)|2

)
≤ 2m− 1

(m− 1)
2 δ

�
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Comments: Theorem 2.2 is useful for studying low-pass
NNIR systems. It indicates the relationship between the pass-
band ripple in ([0, (m− 1)ωo]) and the maximal roll-off that
can be achieved in the transition-band ([(m− 1)ωo, mωo]).
Example: An NNIR lowpass filter is specified as follows:

• passband frequency region: 0 ∼ 0.4π

• passband ripple: 4dB

• stopband gain:≤ −20dB

• transition frequency region: 0.4π ∼ 0.5π

While this specification appears to be relatively mild, it
turns out to be unachievable. From Theorem 2.2, a low-pass
filter with a 4dB passband ripple only has a maximal atten-
uation to 12.25dB that can be achived in the transition band.
(Please refer to [10] for a detailed discussion.)
The upper-bound given in Theorem 2.1, being a global

upper-bound for any ωo ∈ [0, π], can be further tightened
if ωo is known. This is stated in Theorem 2.3.
Theorem 2.3 If the impulse response of a filter is non-
negative, i.e., h (n) ≥ 0, n ∈ Z, and the power spectral
attenuation within [0, ωo] is bounded by:

|H (0)|2 − δ ≤ |H (ω)|2 ≤ |H (0)|2

where δ > 0, 0 ≤ ω ≤ ωo, and ωo ∈
[

4kπ
2m−1 ,

(4k+2)π
2m−1

]
(for power attenuation case) or ωo ∈

[
(4k+2)π
2m−1 ,

4(k+1)π
2m−1

]
(for power gain case), k ∈ {1, 2, . . . , m−1

2 }, m ∈ Z
+ is

odd, andm > 2, then the end-to-end power spectral attenua-
tion/gain in [(m− 1)ωo, mωo] is bounded by:∣∣∣|H ((m− 1)ωo)|2 − |H (mωo)|2

∣∣∣
≤ csc

(
(4k + 1)π

4m− 2

) [
1 +

π

4m− 2
cot

(
(4k + 1)π

4m− 2

)]
δ

(4)

wheremωo ≤ π. (Similar results exist form being even).

Proof: For the sake of brevity, we only give the proof for
the power spectral attenuation case.
Since U2m−2

[
cos

(
ω
2

)]
is symmetric with respect to ω =

π [10], and since a (2m− 2)
th-degreeChebyshev polynomial

of the second kind has 2m − 2 different simple Chebyshev
roots, we only need to consider the firstm− 1 roots.
Let cos

(
ωr

2

)
denote these Chebyshev roots:

cos
(ωr

2

)
= cos

(
pπ

2m− 2 + 1

)
⇒ ωr =

2pπ

2m− 1

where p = 1, 2, . . . , m− 1.
Denote the m − 2 equi-length frequency regions split by

these ωr’s as:

Ia
k :

[
4kπ

2m− 1
,
(4k + 2)π

2m− 1

]

Ir
k :

[
(4k + 2)π

2m− 1
,
4 (k + 1)π

2m− 1

]

where k = 1, 2, . . . , m−1
2 . It can easily be proven that the

power spectrum within frequency region [(m− 1)ωo, mωo]
must decreases from one end to the other when ω ∈ Ia

k and
must increases when ω ∈ Ir

k [10].
Now let ω∗ be the mid-point of a Ia

k :

ω∗ =
1

2

(
4kπ

2m− 1
+

(4k + 2)π

2m− 1

)
=

(4k + 1)π

2m− 1

q � U2m−2

[
cos

(ω∗

2

)]
, s � U

′

2m−2

[
cos

(ω∗

2

)]
and let d be the width of each Ia

k :

d =
(4k + 2)π

2m− 1
− 4kπ

2m− 1
=

2π

2m− 1

Then an upper-bound B can be found by linear approxima-
tion, as shown in (5) and illustrated in Fig. 1 for m = 7.
(Please refer to [10] for a step-by-step derivation of (5).) In
Fig. 1, A denotes the actual maximum of the left side of (4),
and B denotes the bound obtained via linear approximation.
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Fig. 1. An upper-bound obtained by linear approximation

B = q +

∣∣∣∣d2s

∣∣∣∣
= U2m−2

[
cos

(ω∗

2

)]
+

∣∣∣∣
(

π

2m− 1

)
U

′

2m−2

[
cos

(ω∗

2

)]∣∣∣∣
= csc

(
(4k + 1)π

4m− 2

) [
1 +

π

4m− 2
cot

(
(4k + 1)π

4m− 2

)]
(5)

Therefore, the end-to-end spectral attenuation is obtained as:

|H ((m− 1)ωo)|2 − |H (mωo)|2

=

∞∑
l=−∞

h̃ (l) (cos ((m− 1)ωol)− cos (mωol))

≤ B

∞∑
l=−∞

h̃ (l) (1− cos (ωol))

= B
(
|H(0)|2 − |H (ωo)|2

)
≤ Bδ

where B is as described in (5). �
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Theorem 2.4 If the impulse response of a filter is non-
negative, i.e., h (n) ≥ 0, n ∈ Z, and the power spectral
attenuation within the frequency region [0, ωo] is bounded by:

|H (0)|2 − δ ≤ |H (ω)|2 ≤ |H (0)|2

where δ > 0, 0 ≤ ω ≤ ωo, ωo ∈
(
0, π

m+1

]
, m ∈ Z

+, m ≥
2, let Δa

m−1,m (Δr
m−1,m) and Δa

m,m+1 (Δ
r
m,m+1) denote

the end-to-end power spectral attenuation (gain) of the fre-
quency region [(m− 1)ωo, mωo] and [mωo, (m + 1)ωo] re-
spectively, then the variance between the two attenuations
(gains) is bounded by a constant:

Δr
m,m+1 −Δr

m−1,m ≤ 2δ

Δa
m−1,m −Δa

m,m+1 ≤ 2δ

wherem ∈ Z+, m ≥ 2,mωo ≤ π, and

Δr
k−1,k = |H (kωo)|2 − |H ((k − 1)ωo)|2 ≥ 0, k ∈ Z+

Δa
k−1,k = |H ((k − 1)ωo)|2 − |H (kωo)|2 ≥ 0, k ∈ Z+.

Proof: Based on the recurrence relation of the Cheby-
shev polynomial of the first kind in variable x:

Tm+1 (x) = 2xTm (x)− Tm−1 (x)

we have:
Tm+1 (x)− Tm (x) = (2x− 1)Tm (x)− Tm−1 (x)

= Tm (x)− Tm−1 (x) + 2 (x− 1)Tm (x)

Therefore:

Tm+1 (x) − Tm (x)

1− x
− Tm (x)− Tm−1 (x)

1− x
= −2Tm (x)

Let x = cos (ω), simplifying the above equation, we have:

cos ((m + 1)ω)− cos (mω)

1− cos (ω)
− cos (mω)− cos ((m− 1)ω)

1− cos (ω)

= −2 cos (mω) ≤ 2

Therefore
Δr

m,m+1 −Δr
m−1,m

=

{
∞∑

l=−∞

h̃ (l) [cos ((m + 1)ωol)− cos (mωol)]

}

−
{

∞∑
l=−∞

h̃ (l) [cos (mωol)− cos ((m− 1)ωol)]

}

≤ 2
∞∑

l=−∞

h̃ (l) (1− cos (ωol)) = 2
(
|H(0)|2 − |H (ωo)|2

)
≤ 2δ

Similarly, we can prove: Δa
m−1,m −Δa

m,m+1 ≤ 2δ �

Comments: Theorem 2.4 describes the behavior of power
spectral attenuation/gain in terms of higher granular fre-
quency regions: There is a linear increase in the achievable

attenuation/gain in subsequent equi-length frequency regions
along the frequency axis. Obviously, this result is consistent
with the result in Theorem 2.1. Similarly, it is consistent with
the results in [1], i.e., a geometric increase in the achiev-
able attenuation/gain in subsequent geometrically-spaced
frequency regions.

3. CONCLUSION

This paper revisits the performance constraints in the fre-
quency domain of NNIR filters in [1] for the case of equi-
distantly spaced frequency points. The obtained results are
of particular importance to some NNIR systems. Frequency-
domain performance boundaries of various types of NNIR
filters can be studied based on these results.
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