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ABSTRACT

We provide an analysis of the algorithms necessary for the
optimal use of multidimensional signal reconstruction from
multichannel acquisition. First, we provide computable con-
ditions to test the matrix invertibility and propose algorithms
to find a particular inverse. Second, we determine the exis-
tence of perfect reconstruction systems for given FIR analysis
filters with some sampling matrices and some FIR synthesis
polyphase matrices. Then, we present the development of an
efficient algorithm designed to find a sampling matrix with
maximum sampling rate and FIR synthesis polyphase matrix
for given FIR analysis filters so that the system provides a
perfect reconstruction. Once a particular synthesis matrix is
found, we can characterize all synthesis matrices and find an
optimal one according to a design criterion.

Index Terms— Inverse Matrix Problem, Hermite Nor-
mal Form, Smith Normal Form,Perfect Reconstruction, Mul-
tichannel convolution.

1. INTRODUCTION

In recent decades, multirate systems have become important
applications in several engineering areas. The ideas of mul-
tirate systems have been extended from one dimensional sys-
tems to multidimensional systems [1]. The most popular mul-
tidimensional multirate system isM -dimensionalN -channel
perfect reconstruction (PR) finite impulse response (FIR) uni-
form filter bank (FB) system [2, 3].
In the traditional setting, the analysis filters and the sam-

pling matrix are given in the uniform filter bank system. The
goal is to find synthesis filters such that the system remains
a perfect reconstruction for all input signals. In this paper,
we relax the restriction that only the analysis filters are given.
The new goal is to find a suitable sampling matrix and syn-
thesis polyphase matrix which satisfy a perfect reconstruction
condition. Suppose that we have an N -channel convolution
system in M dimensions. Instead of taking all the data and
applying multichannel deconvolution, we can first reduce the

collected data set by a sampling matrix D and still perfectly
reconstruct the signal with a PR synthesis polyphase matrix.
Of course, we want the sampling factor to be as large as pos-
sible because it would give us a minimum collected data set.
To address this situation, we want to answer the following
questions:

Problem 1 Given analysis filters, can we have a PR system
with some sampling matrix D and FIR synthesis polyphase
matrix?

Problem 2 If so, can we find a sampling matrix D having
a maximal sampling factor and a particular FIR synthesis
polyphase matrix? Can we have an algorithm to do so?

These questions can be approached differently in one di-
mensional and multidimensional cases. If they are one di-
mensional filter banks, then the answers to the problems are
trivial. Since D is 1 × 1 matrix, we just need to do a linear
search on sampling factors. If they are multidimensional sys-
tems, however, then there are an infinite many matrices with
a given sampling factor. We will address these two problems
after we state Hermite normal form and Smith normal form.
Once we find a maximal sampling matrix and a particular

synthesis mattrix, we provide an algorithm to obtain an op-
timal FIR synthesis polyphase matrix according to a design
criterion.

2. PROBLEM FORMULATION

Let M , N and D be the dimension of signals, the number
of channels and an M × M sampling matrix with integer
entries respectively. Let P be the sampling factor at each
channel, P := | detD|. Let N (D) be the quotient group
of DZ

M in ZM . Without loss of generality, we make use
of Vaidyanathan’s definition [1] and denote [lj ] to be lj +
DZ

M ∈ N (D) where lj ∈ {Dt | t ∈ [0, 1)}. By polyphase
decomposition (PD), the analysis and synthesis parts can be
represented by an N × P matrix H(z) and P × N matrix
G(z) shown in Fig. 1(b) and Fig. 1(c), respectively, where
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Fig. 1. (a) Analysis Part: Multichannel convolution followed by downsamplingD. (b) Polyphase representation of the analysis
part. (c) Synthesis polypahse reconstrcution.

every element is a Laurent polynomial in z. The PR condition
X̂(z) = X(z) is equivalent toG(z)H(z) = IP .
The data acquisition can be modeled shown in Fig. 1(a).

We considerHi(z) fixed (i.e. point spread function of sam-
pling devices), but the sampling matrix D can be changed.
We provide an efficient algorithm to find D having maximal
sampling rate and FIR synthesis polyphase matrixG(z) such
that PR condition hold. This is a generalization of multichan-
nel deconvolution problem. (i.e. D = I)

3. INVERSE MATRIX PROBLEM

We can generalize Proposition 2 from [4], which considers
the case P = 1, so that we can determine whether an N × P
polynomial matrix is invertible or not. For the proof of the
following two propositions, please refer to our preprint [3].

Proposition 1 Suppose H(z) is an N × P polynomial ma-
trix. Let S = 〈h0(z), ....,hN−1(z)〉 be the C[z]-submodule
of C[z]P generated by the rows hi(z) ofH(z). ThenH(z)
is invertible if and only if the reduced Gröbner basis of S is
{ei}i=0,...,P−1 where ei is the i + 1-th row of the P × P
identity matrix.

Proposition 2 SupposeH(z) is an N × P Laurent polyno-
mial matrix. Consider the (N + P ) × P matrixH

′(z, w) =(
z

m
H(z)

(1 − z1z2...zMw)IP

)
wherem ∈ NM is such that zmH(z)

is a polynomial matrix,w is a new variable, and IP is a P×P
identity matrix. ThenH(z) is Laurent polynomial left invert-
ible if and only ifH ′(z, w) is a polynomial left invertible.

From Proposition 1 and 2, we introduce two new algorithms
to generate an inverse matrix by using Gröbner bases if the
given matrix is invertible.

Algorithm 1 (Particular Polynomial Inverse) The computa-
tional algorithm for a polynomial left inverse matrix.
Input: N × P polynomialM -variate matrixH(z).
Output: P × N polynomial matrixG(z), if it exists.

1. Compute the reducedGröbner basis of {h0(z), ...,hN−1(z)}
where hi(z) is a row ofH(z) and the associated transforma-
tion matrixW (z) by using Buchbergers algorithm..
2. If the reduced Gröbner basis is {ei}i=0,..,P−1, then output
W (z). Otherwise, there is no solution.

Algorithm 2 (Particular Laurent Polynomial Inverse) The
computational algorithm for a Laurent polynomial left inverse
matrix.
Input: N × P Laurent polynomialM -variate matrixH(z).
Output: P × N Laurent polynomial matrixG(z), if it exists.
1. Multiply H(z) by a common monomial zm such that
H
′(z, w) is polynomial matrix from Proposition 2.

2. Call Algorithm 1 with inputH ′(z, w).
3. If the output of Algorithm 1 isG

′(z, w), then output

z
−m(G′

i,j(z,

M∏
k=1

z−1
k ))i=0,...,P−1; j=0,...,N−1.

Otherwise, there is no solution.

4. PROPOSED ALGORITHM

Theorem 1 (Hermite Normal Form) [5] Given anM × M
nonsingular integer-valued matrixD, there exists anM ×M
unimodular matrixK such thatDK = H , the Hermite nor-
mal form ofD whose entries satisfy hij = 0 for j > i, hii >
0 for all i and 0 ≤ hij < hii for j < i. Define C(P ) to be a
set of Hermite normal forms for a given absolute determinant
P . Then |C1(P )| = 1 and |CM (P )| =

∑
q|P q|CM−1(q)| for

M ≥ 2 where |CM (P )| is defined to be the size of CM (P ).

When M = 2, then we have |C2(P )| =
∑

q|P q. Robin [6]
proves that |C2(P )| = O(P log log P ).
For the following algorithm, we will employ the Smith

normal form. For a detail discussion, please refer to [5].
There are many algorithms for efficiently computing the Smith
normal form. Among all algorithms, The Storijohann’s al-
gorithm using modular techniques to compute Smith normal
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form and transformation matrices gives the best known com-
plexity analysis for the integer matrices [7].

Corollary 1 [8] Let D = UΛV be a Smith normal form.
Define Φ(l) = Ul. Then N (D) = Φ(N (Λ)).

Algorithm 3 The algorithm of finding a sampling matrix and
synthesis filters satisfying the PR condition for the input sam-
pling rate.
Input: FIR analysis filtersHi(z) and a sampling rate P .
Output: sampling matrixD and FIR synthesis polyphase ma-
trix together with the set N (D), if it exists.
1. If C(P ) is empty, then there is no solution.
2. TakeD from C(P ) and set C(P ) := C(P ) − {D}.
3. Let D = UΛV be a smith normal form. Find N (D) by
Corollary 1.
4. By the polyphase decomposition (PD),H(z) is a polyphase
representation matrix corresponding toHi(z) andD.
5. Find a left inverse G(z) ofH(z) by Algorithm 2. Other-
wise goto 1.
6. Output the FIR synthesis polyphase matrixG(z) together
with the set N (D) and the sampling matrixD.

For the proof of the following Propositions, please refer to our
preprint [8].

Proposition 3 The Polynomial analysis filtersHi(z) have no
common solution if and only if the system provides a PR for
some samplingmatrix and some polynomial synthesis polyphase
matrix.

Proposition 4 Every common solution of the FIR analysis fil-
ters Hi(z) has at least one zero component if and only if the
system provides a PR for some sampling matrix and some FIR
synthesis polyphase matrix.

This proposition addesses the first problem in the beginning
of this paper. To determine whether the system is perfectly
reconstructable for given a set of analysis filters, we only need
to examine the solution set of the analysis filters. Now we
provide an upper bound of the search method.

Remark 1 Suppose now consider P > N . Since the rank of
the matrix H(z) is N , it is less than number of columns P .
Therefore it is impossible to have a left inverse matrix. This
provides us an upper bound of the search method.

According to above Remark and Hermite normal form, the
search space for sampling matrices to determine the perfect
reconstructability is a finite process. We propose an algorithm
to answer the second problem mentioned in the beginning of
the paper.

Algorithm 4 The algorithm of finding a sampling matrix with
maximal sampling factor and synthesis filters satisfying the
PR condition.
Input: FIR analysis filters.

Output: sampling matrixD and FIR synthesis polyphase ma-
trix together with the set N (D), if it exists.
1. Check the solution set of Hi(z) satisfying the condition of
Proposition 4. Otherwise there is no solution.
2. Set P = N .
3. Call Algorithm 3 and output FIR synthesis polyphase ma-
trix, the set N (D) and a sampling matrixD.
4. Otherwise, set P = P − 1 and go to 3.

By Theorem 1, the maximum number of iterations is
∑N

m=1∑
q|m q|CM−1(q)| for M > 2. When M = 2, then

∑N

m=1∑
q|m q = π2

12
N2 + O(N lnN) by Handy and Weight [9].

To improve the performance, we can reduce the upper bound
P by setting to N − M due to the fact that the possibility of
being a PR system is zero when N − M < P [3].

Example 1 Let H0(z) = (1 + z1)(1 + z2), H1(z) = (1 −
z1)(1 − z1z2), H2(z) = (1 − z1)(z1 − z2), H3(z) = (1 −
z2)(1 − z1z2), H4(z) = (1 − z2)(z1 − z2), H5(z) = (1 −
z1)(1 − z2) be the analysis filters. By the Algorithm 4, we
can show that the solution set of analysis filters is an empty
set, which implies the system is polynomial perfectly recon-

structable. We then obtain a sampling matrixD =

(
1 0
−2 3

)

with maximum sampling rate and synthesis matrix G(z) =⎛
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satisfying the PR condition.

5. OPTIMIZATION OF SYNTHESIS FIR
POLYPHASE MATRIX

By Zhou and Do [4], we can characterize the set of all FIR
synthesis matrices {G(z) | G(z) = G̃(z) + A(z)(I −
H(z)G̃(z)), A(z) is an arbitrary P × N Laurent polyno-
mial matrix } from a particular synthesis matrix G̃(z). By
using the characterization and extending Agorithm 2 by Zhou
and Do [4], we have the following algorithm: (Please refer to
our preprint [3] for the detail discussion)

Algorithm 5 (Optimal Inverse) The computational algorithm
for an optimal left inverse matrix by minimizing the mean
square error for a given support Q ofA(z) where Ai,j(z) =∑

k∈Q ai,j,kzk.
Input: N × P matrixH(z) withM variables.
Output: an optimal inverse P × N matrixG(z) with respect
to the given support.
1. Compute a particular inverse G̃(z) by Algorithm 2.
2. ComputeGi(z) the ith rows ofG(z) with respect to ai,j,k.
3. For each i, computeMSE(ai,j,k) = σ2

∑N−1

j=0

∑
k∈Q |gi,j,k|2.

4. Set all partial derivatives of MSE(ai,j,k) with respect to
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Fig. 2. The origin image and the reconstruction outputs are imposed by additive white noise with σ = 4. (a) The original image.
(b) Algorithm 1, MSE=127.42. (c) Algorithm 5, MSE=65.07.

ai,j,k to zero and solve the linear equations.
5. Back substitute {ai,j,k} in G(z) to obtain an optimal so-
lution and outputG(z).

5.1. Simulation

We demonstrate a simulation of 4-channel acquisition with
the subband signals containing different levels of white Gaus-
sian noise. In each subband signal, the white Gaussian noise
is channel independently with zero mean and power density
σ2. In the simulation, we assume the input signal is a 2-
dimensional image shown in Fig. 2(a). Given some ran-
dom analysis filtersH0(z) = 1/3z1z2 + z2 + z−1

1 , H1(z) =
1/3z1z2 + 1/3z1z

−1
2 + z2, H2(z) = 1 + z2 + z−1

1 , H3(z) =

1/3z1z2, and a quincunx sampling matrix D =

(
1 1
1 −1

)
.

In the experiment, we want to compare with reconstruction
performance in MSE between Algorithm 1 and Algorithm 5.
The reconstruction images are shown in Fig. 2(b) - 2(c) with
σ = 4. We find out that for different levels of white noise, Al-
gorithm 5 has a better performance in MSE than Algorithm
1. Another observation is that when σ is below 4, the recon-
struction has relatively good quality observed by eyes.

6. CONCLUSION

In this paper, first we handle the inversematrix problem. Then
we address the necessary and sufficient condition on the anal-
ysis filters to have a PR system with some sampling matrix
and some synthesis matrix. Using Hermite and Smith nor-
mal form, we propose an efficient algorithm to find a FIR PR
synthesis polyphase matrix and a sampling matrix such that
collected data is the minimum among all sampling matrices
up to equivalence. Once having a particular synthesis matrix,
we can parametrize the set of all synthesis matrices where an
optimal solution can be found for a given design criterion.
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