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ABSTRACT

This paper is concerned with the problem of computing a discrete-
coefficient approximation to a digital filter. In contrast to earlier
works that have approached this problem using standard combina-
torial optimization tools, we take a geometric approach. We define
a Riemannian manifold, arising from the difference in frequency re-
sponse between the two systems of interest, on which we design ef-
ficient algorithms for sampling and approximation. This additional
structure enables us to tame the computational complexity of the na-
tive combinatorial optimization problem. We illustrate the benefits
of this approach with design examples involving IIR and FIR filters.

Index Terms— System analysis and design, Digital filters, Dif-
ferential geometry

1. INTRODUCTION

The notions of distance between linear systems, computations of
near neighbors and paths between them that minimize the distance
in a suitable sense are fundamental to a variety of problems in sys-
tem theory [1, 2]. In practice, design techniques do not always pay
attention to this underlying geometric structure. For instance, in the
problem of discrete-coefficient filter design, one tries to minimize
a cost function that includes a penalty for deviation from a desired
frequency response, and perhaps a few other terms. A naı̈ve ap-
proach that generates a discrete-coefficient filter by rounding coef-
ficients of a corresponding infinite or arbitrary-precision design is
rarely sufficient in terms of quality. However, more systematic de-
sign methods based on optimization face the problem of dealing with
a multimodal cost function over a discretized domain - representing
significant computational complexity. In this paper, we propose an
algorithm for dealing with such problems that more directly utilizes
the geometry of the space of systems. In particular, we use the dis-
tance between filters, in the sense of frequency response, to describe
a nonlinear manifold on which we can focus the search for a nearest
discrete-coefficient neighbor of the given arbitrary-precision filter.

Owing to its practical significance, the problem area has at-
tracted the attention of several research groups. Here, we cite only
a few representative works to illustrate methods that have been
adopted. A common early thread in this area is the use of integer
programming to directly minimize an error with respect to desired
frequency response [3]. With the availability of increased computing
power, this has recently been extended to parallel implementation
of large-scale mixed-integer linear programs [4]. The optimization
problem has also been approached using numerous heuristic search

methods including simulated annealing [5], evolution strategies [6],
[7], ant colony optimization [8] and other local search methods [9].
In most of these approaches, the cost function is represented in a
weighted sum form - with terms for frequency response error, con-
cerns such as psycho-physical requirements [6] and a measure of
sparsity or complexity (e.g., number of non-zero bits or multipliers).

Our approach is to view the error function as yielding the ‘lo-
cal’ distance on a Riemannian manifold of digital filters. In general,
even with a proper definition of such a nonlinear manifold, it can
be hard to derive closed form results for geodesics and neighbor-
hoods. Instead, we design approximation algorithms that leverage
this structure while keeping computation tractable. We achieve this
by drawing on earlier work, regarding sampling in abstract spaces,
to define a finite point-set on the manifold that is well-distributed
with respect to the chosen metric. This has the effect of significantly
reducing complexity as compared to uninformed search.

2. GEOMETRY OF THE SPACE OF DIGITAL FILTERS

A discrete IIR filter can be defined in time-domain as,

M∑
j=0

ajy[n− j] =
N∑

k=0

bkx[n− k] (1)

where N , M are the orders of the numerator and denominator, aj , bk

are the reverse and forward coefficients, respectively. By convention,
a0 = 1. After a Z-transform, z = ej2πf or ejφ,

H(z) =

∑N
k=0 bkz−k

1 +
∑M

j=1 ajz−j
(2)

There are standard ways of designing the coefficients of this sys-
tem subject to a variety of performance specifications. When dealing
with two such systems, say, H(ejφ) and K(ejφ) where the former
is the designed system and the latter is a ‘desired’ system, then one
can define an error,

Φ(a1, ..., aM , b0, ..., bN ) =

∫ 2π

0

(
|H(ejφ)|− |K(ejφ)|

)2

dφ (3)

A typical design goal is to minimize this functional over a suit-
able field of coefficients. In particular, we can address the problem
with K(ejφ) representing an arbitrary-precision designed goal and
H(ejφ) representing a target system involving coefficients aj , bk

that are restricted to integers, powers-of-two numbers, etc.
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Consider two filters defined by the coefficients, c(1,2) =

(a
(1,2)
1 , a

(1,2)
2 , ..., a

(1,2)
M , b

(1,2)
0 , ..., b

(1,2)
N ), with a distance between

them,

D(c(1), c(2)) =

√
1

2π

∫ 2π

0

(
|Hc(1)(e

jφ)| − |Hc(2)(e
jφ)|

)2

dφ

(4)
With c(2) = c(1) + dc(1), we can write the distance as,

ds2 = D2(c(1), c(1) + dc(1))

=

N+M+1∑
i,j=1

gij(c
(1))dαidαj + O

(
(dc(1))3

)
(5)

where α1 = a
(1)
1 , . . ., αM = a

(1)
M , αM+1 = b

(1)
0 , . . .,

αM+N+1 = b
(1)
N and g becomes a metric tensor in the sense of

Riemannian geometry [2].
The above equation, although derived from differences in fre-

quency response, captures more information about the nature of the
problem. For instance, one could compute the Gauss curvature [2],
K, of the manifold represented by this metric and infer facts such
as that zero curvature corresponds to a simple re-parametrization for
which standard parameter optimization suffices whereas a manifold
with non-zero curvature calls for more sophisticated treatment.

We remark that this is one among many ways to define a metric
in the space of digital filters or linear systems. Often, alternatives
have been focussed on analysis rather than synthesis, e.g., to under-
stand the Lie group structure of the space of linear systems [10] or
to understand properties of power spectral density functions [11].
Indeed, the procedure described in the following sections could be
adapted to work with these alternate metrics as well.

3. WELL-DISTRIBUTED SETS ON NONLINEAR
MANIFOLDS

Our design problem is essentially that of finding a nearest neigh-
bor to the desired system response. The practical difficulty is that
this neighborhood relation is not very well behaved in the coeffi-
cient space and naı̈ve approaches such as rounding yield very poor
approximations. Instead, we make use of the fact that the proper
definition of neighborhood is provided by a metric such as in equa-
tion 5. Having established the geometric structure, there is still the
issue of how to compute on this manifold. Analytically determining
paths and regions on general manifolds is a hard problem, infeasible
except in special cases. We approach this computation indirectly, by
first sampling the space to create a finite point-set that is fair (in a
precisely defined sense) with respect to the metric. The exact proce-
dure is described below.

Consider a nonlinear manifold that is defined in terms of coordi-
nates u1, ..., un and the metric tensor g. If one considers this man-
ifold to be generated by some mapping from the Euclidean plane,
then we define fair mappings to be those that preserve area or vol-
ume in the sense of,

Ψ(u1, ..., un) =
√

det(gij(u1, ..., un)) = c (6)

Once we have such a mapping (for some c), if we had an ef-
ficient procedure for incrementally sampling the Euclidean plane,
then - through this mapping - the same procedure lets us efficiently
sample on the manifold. The following theorem, from [12], provides
conditions that such a mapping should satisfy.

Theorem 3.1 Let Ψ(u1, u2, ..., un) be a nonnegative function on
[0, 1]n where Ψ2 is continuously differentiable. Let Ψ(u1, u2, ..., un)
be positive with exception of a set L of points (u1, u2, ..., un) of
Lebesgue-measure 0. For (u1, u2, ..., un) �∈ L, let

f1(u1, u2, ..., un) =

∫ u1
0

Ψ(u1, ..., un)du1∫ 1

0
Ψ(u1, ..., un)du1

. . .

fn−1(un−1, un) =

∫ un−1
0

∫ 1

0
...

∫ 1

0
Ψ(u1, ..., un)du1...dun∫ 1

0

∫ 1

0
...

∫ 1

0
Ψ(u1, ..., un)du1...dun

fn(un) =

∫ un

0

∫ 1

0
...

∫ 1

0
Ψ(u1, ..., un)du1...dun∫ 1

0

∫ 1

0
...

∫ 1

0
Ψ(u1, ..., un)du1...dun

(7)

Furthermore, let the functions f1, f2, ..., fn be extendable to con-
tinuously differentiable mappings defined on [0, 1]n. Then the exten-
sion functions (f1, f2, ..., fn) define a diffeomorphism of [0, 1]n\L
where equation 6 is valid for a constant c.

Based on this, we can define the following algorithm for sam-
pling on a manifold:

1. Given an abstract surface S defined on [0, 1]n, where
Ψ(u1, ..., un) satisfies propositions of theorem 3.1 and
where x(u1, ..., un) is an embedding of S in �n, construct
f(u1, ..., un) =

(
f1(u1, ..., un), ..., fn(u1, ..., un)

)
defined

over [0, 1]n.

2. Compute the inverse, f−1(u1, ..., un).

3. Beginning with a well-distributed set D ∈ �n (incrementally
generated by a quasi-Monte Carlo method), compute the im-
age of D under the transform x(f−1(u1, ..., un)).

The output of the above procedure is a well-distributed point-set
on the nonlinear manifold.

4. ALGORITHM FOR FINDING THE NEAREST
DISCRETE-COEFFICIENT NEIGHBOR OF A FILTER

We proceed with the design in a two-stage process. The first
stage involves local optimization to determine a candidate discrete-
coefficient filter (a point in a multi-dimensional lattice). This com-
putation is local in the sense that it focusses search to a unimodal
neighborhood, on the error surface, of the arbitrary-precision design.
The outcome of this step is an initial guess that is much better than
naı̈ve coefficient rounding but, of course, not the global optimum.
Beginning with this initial point and using knowledge of the metric
tensor (equation 5) - which defines principal directions along which
near neighbors are situated, we define the sampling region (section
3) for the determination of the optimal design.

In the computation of the start point, we ignore the global Rie-
mannian structure and solve a local Euclidean optimization prob-
lem. For instance, consider a filter defined by the coefficient vec-
tor c0 ∈ �M+N+1 and a corresponding discrete-coefficient filter,
defined by coefficients ĉ ∈ Z

M+N+1. In a local sense, the fil-
ter defined by coefficients ĉ∗ is a good approximation to the filter
defined by coefficients c0 at a critical point of the quadratic form
(c0− ĉ)′Q(c0− ĉ), where Q is locally identical (shares eigenvalues)
to the metric tensor g. After a few algebraic manipulations, this can
be written as,

ĉ∗ = arg min(ĉ′Qĉ + b′ĉ) (8)
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There are many efficient algorithms for solving this problem [13]. In
high dimensions, the point ĉ∗ represents a significantly better start-
ing point for further sampling than, e.g., rounding.

Next, we need to determine the extent of the region within which
to sample. Here, we draw on a famous result by Minkowski [14]. We
ask - given our knowledge of the curvature of the space, which man-
ifests itself as the aspect ratio and principal direction of an ellipsoid
centered on the current point, how long should the axes be so as to
guarantee inclusion of at least one non-trivial grid point (represent-
ing a discrete coefficient design)?

Theorem 4.1 (Minkowski) Let S be a subset in �n that is symmet-
ric with respect to the origin. If the volume V of S is greater than
2n, then S must contain at least 3 grid points from a uniform axis-
aligned lattice - the origin and two non-trivial points ±P .

Consider the case of an n-dimensional ellipsoid S with principal
axes of length r1, ..., rd. The corresponding volume is,

V =
π

d
2

Γ
(

d
2

+ 1
) r1...rd (9)

If this ellipsoid were scaled by a positive factor s, guaranteeing
the existence of a grid point within it, then

s ≥ 2√
π

d

√
Γ
(

d
2

+ 1
)

d
√

r1...rd
(10)

Knowing that,

2√
π

d

√
Γ
(d

2
+ 1

)
<
√

d (11)

the scaling factor reduces to,

s >

√
d

d
√

r1...rd
(12)

Algorithm 1 Design of Discrete-Coefficient Digital Filter

INPUT: Floating point filter defined by coefficients C0; dis-
cretization level for desired filter; Error Tolerance
OUTPUT: Discrete-coefficient filter defined by Ĉ

Compute metric tensor g, equation 5.
Construct a semi-definite matrix Q that agrees with g at C0

Solve for initial guess Ĉ0 by a minimization, equation 8

Compute scale factor for an ellipse centered at Ĉ0, equation 12

while Error > Tolerance do
Generate samples within ellipse, section 3
These samples are not necessarily grid points - compute closest
grid point using equation 8

end while

5. EXPERIMENTS AND EXAMPLES

In this section, we illustrate the use of the above algorithm using
concrete examples. We begin with a first-order IIR filter, for which
we work out the metric and illustrate the geometric issues discussed

Fig. 1. Behavior of the metric tensor understood in terms of visu-
alization of local neighborhoods (in this case, ellipses). This also
illustrates the need to compute a scaling factor such that these el-
lipses include nontrivial grid points.

Fig. 2. An analytically computed geodesic in the space of first-order
IIR filters. This is significantly different from a straight line in pa-
rameter space - due to the non-euclidean nature of the space.

thus far. Then, we present results for more complex systems, demon-
strating tangible benefits in terms of design objectives.

Consider the filter,

H(z) =
b

1 + az−1
(13)

The corresponding Riemannian metric is,

ds2 =
1

2π

∫ 2π

0

∣∣∣ b + db

1 + (a + da)e−jφ
− b

1 + ae−jφ

∣∣∣2dφ (14)

ds2 =
(1 + a2)b2

(1− a2)3
da2 + 2

ab

(1− a2)2
dadb +

1

1− a2
db2

+O
(
da3, da2, db, da2db2, db3)

(15)

The resulting behavior is summarized in figures 1 and 2.
Next, we present further design examples in figures 3 and 4,

where we compare the performance of algorithm 1 against unin-
formed random sampling in the neighborhood of the floating-point
design. We make this comparison by computing a factor q which
measures the number of samples required by uninformed random
sampling over that required by the procedure of algorithm 1. To the
extent that many heuristic search and global optimization algorithms
utilize such random sampling as an essential ingredient, this mea-
sure illustrates the benefits of incorporating geometric information
into the process.
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Fig. 3. Design example - a highpass inverse Chebyshev filter of
order 5 (4-bit implementation). Our algorithm is better than a naı̈ve
random sampling algorithm by a factor q = 1.1390 × 107 and the
quality of approximation is superior.

We conclude this section with a simple, somewhat counter-
intuitive, example that underscores the benefits of the geometric
approach. Consider an FIR filter of the form,

H(z) = (1− az−1)(1− bz−1) (16)

The corresponding Riemannian metric can be derived as,

ds2 = (1 + b2)da2 + 2(1 + ab)dadb + (1 + a2)db2
(17)

A specific floating-point design is (a = 0.5, b = 200.5). A
naı̈ve approach might suggest the discrete equivalent (a = 1, b =
200). In fact, in the sense of the metric tensor above, a much better
design is (a = 1, b = 150), significantly further away from the
original design than one might have intuitively expected. Moreover,
even with a heuristic search algorithm such as simulated annealing,
this global optimum would only be found with an excessive amount
of randomized search when compared to the geometric alternative
described above.

6. CONCLUSIONS

We present an algorithm for computing a discrete-coefficient approx-
imation to an arbitrary-precision filter, utilizing the non-euclidean
geometry arising from the difference in frequency response. This
structure allows us to significantly focus search so that the computa-
tional complexity of the native combinatorial optimization problem
can be tamed. The algorithm, as presented, is the first step in a larger
research program. In future, we seek other systematic procedures
to improve estimates such as in equation 12 and other sophisticated
versions of local optimization so that, in combination with the ge-
ometric sampling procedure, the efficiency of design can be further
improved - enabling more complex systems and specifications.
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